
AD9920A
Rev. B | Page 71 of 112
SG CONTROL USING GPO
The AD9920A uses two of the GPO signals to generate the SG
signals for the three-level outputs V5 and V6. Because GPO5
and GPO6 are used as inputs to the vertical driver, they must
be properly initialized at power-up to avoid incorrect V-driver
output levels. During different CCD timing modes, the GPO
signals can be controlled in several ways to produce the proper
SG signal operation.
GPO5/GPO6 Power-Up Settings
GPO5 and GPO6 should be programmed with a polarity of
high at power-up by setting the GP5_POL and GP6_POL bits
(Address 0x7A, Bits[5:4]) equal to 11. This setting provides the
correct polarity in the V-driver, because the XSG signals should
be active low at the V-driver inputs. At power-up, the GPO5
and GPO6 outputs should also be enabled, by setting Register
Address 0x7A, Bits[21:20] and Bits[13:12] all equal to 1, so that
there is a defined state at all times.
Manual Control of GPO5
Figure 91 shows an example exposure/readout sequence of the
AD9920A used in 18-channel mode without any GPO signals
used for SG control.
Figure 92 shows the 19-channel mode,
with GPO5 used to control the SG signal for the V5 output. In
this configuration, the GPO manual control method is used.
A serial write to the GP5_PROTOCOL register is used to set
the protocol of GPO5 equal to 1 (no counter association). The
manual trigger bit for GPO5 (Address 0x70, Bit 10) is then
written on the field previous to the field that requires the GPO5
(SG) signal. At the end of the readout, the GP5_PROTOCOL
register can be reset to 0 (idle).
Triggered Control of GPO5
Figure 93 shows the 19-channel mode, again with GPO5 used
to control the SG signal for the V5 output. In this configuration,
however, the secondary counter (scheduled toggles) method is
used. A serial write to the GP5_PROTOCOL register is used to
set the protocol of GPO5 equal to 6 (link to secondary counter).
At the start of the exposure, the field toggle location for GPO5 is
programmed to the desired field count value to trigger the GPO5
signal. Then, the secondary counter is triggered. The secondary
counter automatically increments and generates the GPO pulse
in the proper field location during readout. At the end of the
readout, the GPO5 protocol is automatically reset to idle.
The advantage of using the secondary counter is that no serial
writes are required during exposure or readout, unlike the manual
control method. The disadvantage is that more information must
be programmed before the start of exposure, such as the exact
field location where the GPO pulse is needed, taking into
account the length of the exposure and readout fields.
VD
SUBCK
MECHANICAL
SHUTTER
OPEN
CLOSED
SERIAL
WRITES
OPEN
VSG
STILL IMAGE READOUT
CCD
OUT
DRAFT IMAGE
STILL IMAGE
FIRST FIELD
STILL IMAGE
SECOND FIELD
STILL IMAGE
THIRD FIELD
DRAFT IMAGE
1
6
23
4
5
7
tEXP
0
68
78
-0
91
Figure 91. Exposure/Readout Operation Without Using GPO for SG Signal