參數(shù)資料
型號(hào): MT90520AG
廠商: ZARLINK SEMICONDUCTOR INC
元件分類: 數(shù)字傳輸電路
英文描述: 8-Port Primary Rate Circuit Emulation AAL1 SAR
中文描述: ATM SEGMENTATION AND REASSEMBLY DEVICE, PBGA456
封裝: 35 X 35 MM, 1.27 MM PITCH, PLASTIC, MS-034, BGA-456
文件頁(yè)數(shù): 78/180頁(yè)
文件大?。?/td> 1736K
代理商: MT90520AG
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)當(dāng)前第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)第158頁(yè)第159頁(yè)第160頁(yè)第161頁(yè)第162頁(yè)第163頁(yè)第164頁(yè)第165頁(yè)第166頁(yè)第167頁(yè)第168頁(yè)第169頁(yè)第170頁(yè)第171頁(yè)第172頁(yè)第173頁(yè)第174頁(yè)第175頁(yè)第176頁(yè)第177頁(yè)第178頁(yè)第179頁(yè)第180頁(yè)
MT90520
Data Sheet
78
Zarlink Semiconductor Inc.
UDT Mode of Operation
In “normal” operation (i.e., the UDT RX_SAR’s Fast SN Processing state machine is in “sync”), the UDT RX_SAR is
responsible for transferring a UDT cell received at the UTOPIA interface to a single UDT Reassembly Circular
Buffer in internal memory (corresponding to the TDM port for which the data is destined). However, if it is not in
“sync”, the UDT RX_SAR may also be responsible for inserting up to 7 dummy cells (each filled with 47 bytes of
user-defined data) into the port’s UDT Reassembly Circular Buffer.
Regardless of the state of the Fast SN Processing state machine, a comparison is made between the value of the
UDT RX_SAR’s write pointer and the TDM module’s read pointer, prior to the transfer of each cell to the circular
buffer. The result of the comparison determines whether a slip-error needs to be reported in the MIB statistics, and
may also result in an adjustment of the write pointer’s location before a cell is written to the UDT Reassembly
Circular Buffer (see UDT Overflow and Underrun Detection below).
TDM Data Transfer
Normally the UDT RX_SAR simply transfers 47-byte blocks of data from the UTOPIA interface to a port’s UDT
Reassembly Circular Buffer. However, in the case of a cell loss or misinsertion, up to 7 dummy cells may be
inserted into the circular buffer before the received cell is accepted. If the user has set the
UDT_INSERT_LOST
bit
in the UDT Reassembly Control Register at byte-address 2000h, the UDT RX_SAR is configured to insert the
number of dummy cells calculated by the Fast SN Processing state machine in a cell loss case. On the other hand,
if the user has not set the UDT_INSERT_LOST bit, the UDT RX_SAR will insert a maximum of 2 dummy cells (i.e.,
even if the number of lost cells is greater than 2, only 2 dummy cells may be inserted) into the UDT Reassembly
Circular Buffer in a cell-loss event.
UDT Reassembly Circular Buffers
In the UDT mode of operation, each VC has a specified UDT Reassembly Circular Buffer located in internal
memory. Each buffer is 2048 bytes long and is therefore capable of storing over 43 cells worth of data. The user
can adjust the
Maximum Lead
field in the VC’s UDT Reassembly Control Structure to control the CDV tolerance of
the VC. The Maximum Lead field, as explained in Section , “UDT Reassembly Control Structures,” on page 67, is
user-programmable and determines the maximum distance between the TDM module’s read pointer and the UDT
RX_SAR’s write pointer. In general, the operations of the UDT RX_SAR and the TDM module are synchronized so
that the UDT RX_SAR’s write pointer and the TDM module’s read pointer are always an average distance
(equivalent to Maximum Lead / 2) apart. This phenomenon occurs because most of the time, each time that the
UDT RX_SAR writes a complete cell to the circular buffer, the TDM module reads the complete cell (1:1
relationship).
UDT Overflow and Underrun Detection
The UDT RX_SAR is responsible for generating buffer overflow and buffer
underrun error notifications on a per-VC
basis. In addition to determining if errors occur, the UDT RX_SAR also attempts to compensate for these slips by
adjusting its write pointer. The goal of the write pointer adjustment is to prevent the occurrence of subsequent slips.
When the first cell is about to be written to the UDT Reassembly Circular Buffer for a VC, the UDT RX_SAR looks
at the current value of the TDM read pointer and adjusts the value of its write pointer to be equal to
TDM read
pointer + avg_lead
(where avg_lead is equal to Maximum_Lead / 2). Therefore, if no slips occur, the write pointer
should always be an “average” distance away from the TDM read pointer.
For all subsequent cells, an algorithmic slip-checking routine is performed for every cell which is written to the UDT
Reassembly Circular Buffer, whether it is a dummy cell or a received ATM cell. Each time a cell is to be written to
internal memory, the algorithm looks at the relationship between the UDT RX_SAR’s write pointer and the TDM
module’s read pointer. The algorithm then determines whether the next write to occur will be an “okay” condition, an
overflow, or an underrun. Generally speaking, an “okay” condition means that the UDT RX_SAR is trying to write to
a memory location which is within a distance of Maximum Lead from the TDM read pointer. Overflow conditions are
conditions in which there is a risk of the UDT RX_SAR over-writing data which has yet to be read by the TDM
相關(guān)PDF資料
PDF描述
MT9072 Ultraframer DS3/E3/DS2/E2/DS1/E1/DS0
MT9072AB Ultraframer DS3/E3/DS2/E2/DS1/E1/DS0
MT9072AV Ultraframer DS3/E3/DS2/E2/DS1/E1/DS0
MT90820 Large Digital Switch
MT90820AL Large Digital Switch
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MT90520AG2 制造商:Microsemi Corporation 功能描述:ATM SAR 2.048MBPS 2.5V CBR 456BGA - Trays 制造商:Zarlink Semiconductor Inc 功能描述:ATM SAR 2.048MBPS 2.5V CBR 456BGA - Trays
MT90528 制造商:ZARLINK 制造商全稱:Zarlink Semiconductor Inc 功能描述:28-Port Primary Rate Circuit Emulation AAL1 SAR
MT90528AG 制造商:ZARLINK 制造商全稱:Zarlink Semiconductor Inc 功能描述:28-Port Primary Rate Circuit Emulation AAL1 SAR
MT90528AG2 制造商:ZARLINK 制造商全稱:Zarlink Semiconductor Inc 功能描述:28-Port Primary Rate Circuit Emulation AAL1 SAR
MT90710 制造商:MITEL 制造商全稱:Mitel Networks Corporation 功能描述:High-Speed Isochronous Multiplexer