參數(shù)資料
型號: TDAT04622
英文描述: TDAT SONET/SDH 155/622/2488 Mbits/s Data Interfaces
中文描述: TDAT的SONET / SDH 155/622/2488 Mbits /秒數(shù)據(jù)接口
文件頁數(shù): 21/310頁
文件大?。?/td> 4628K
代理商: TDAT04622
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁當(dāng)前第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁第211頁第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁第220頁第221頁第222頁第223頁第224頁第225頁第226頁第227頁第228頁第229頁第230頁第231頁第232頁第233頁第234頁第235頁第236頁第237頁第238頁第239頁第240頁第241頁第242頁第243頁第244頁第245頁第246頁第247頁第248頁第249頁第250頁第251頁第252頁第253頁第254頁第255頁第256頁第257頁第258頁第259頁第260頁第261頁第262頁第263頁第264頁第265頁第266頁第267頁第268頁第269頁第270頁第271頁第272頁第273頁第274頁第275頁第276頁第277頁第278頁第279頁第280頁第281頁第282頁第283頁第284頁第285頁第286頁第287頁第288頁第289頁第290頁第291頁第292頁第293頁第294頁第295頁第296頁第297頁第298頁第299頁第300頁第301頁第302頁第303頁第304頁第305頁第306頁第307頁第308頁第309頁第310頁
Agere Systems Inc.
19
Advisory
May 2001
for Version 1 and 1A of the Device
TDAT042G5 Device Advisory
UTOPIA (UT)
(continued)
I
The interface can drain an entire FIFO at a rate of 400 Mbytes/s. To drain 256 bytes, it requires a maximum of
(256 / 400,000,000) = 0.64
μ
s to drain a FIFO that is completely full. To drain all four FIFOs, it requires
(0.64 x 4) = 2.56
μ
s total
.
For data to be efficiently removed from each of the Rx FIFOs, a round-robin extraction method must be employed
since the RxPAB and RxPAD signals are not available for direct status polling. Since it requires a worst case total of
3.2922
μ
s to fill a FIFO, the master must service all FIFOs in a manner such that it does not allow any particular
FIFO to fill and hence overflow. Assuming equal servicing of each FIFO, the master must therefore not service any
particular FIFO for longer than (3.2922 / 4) = 0.8231
μ
s. This also must account for any dead cycles in a cycling
between channels and any dead cycles on a particular channel (single dead cycle between EOP and SOP).
When servicing four FIFOs, there is a maximum clock cycle penalty for switching between channels. For two-cycle
mode, this penalty is a maximum of four UTOPIA master clock cycles; so to switch between all four channels, a
total of up to sixteen master clock cycles may be required to perform all the switching. The value of four is worst
case, and in some cases this can be as low as one cycle. The value of four results from the case where the FIFO
drains while servicing that channel, which will be common when draining at the 100 MHz frequency. In that case,
the master must first see that the FIFO has drained by observing that RxPAA is invalid on the last cycle while drain-
ing the FIFO (best case is one cycle lost). It must then deactivate RxENB and place a new channel address on the
address bus on the following cycle (best case is one cycle lost). It must then activate RxENB for the new channel
on the following cycle and have TDAT sample RxENB low (best case is one cycle lost). The TDAT will then output
data two cycles later when using a PA response mode of two cycles (one cycle lost with data output on second
cycle). Any additional delays by the master must be added to these to calculate a worst-case condition. The best-
case condition occurs when the master stops the data flow when there are still more than two data items contained
within the FIFO. In this case, the master deactivates RxENB at some predetermined maximum 32-bit word drain
value, where the PA response on the cycle prior to deactivation had valid data. For two-cycle mode, two additional
data items will be output from the FIFO for that particular channel, if available. The master deactivates RxENB,
places the new channel address on the FIFO, and activates RxENB. On the cycle where RxENB is activated, the
last valid data item from the previous channel may be output (best case), and one dead cycle will follow this before
data for the following selected channel is output.
Given the information above, assume the worst case of four cycles between channel switching. Also assume the
FIFOs are filling at a worst-case rate, 3.2922
μ
s/FIFO. Assume the master is draining each FIFO using the 32-bit,
100 MHz, A/B, UTOPIA interface. Assume the master extracts a maximum of thirty 32-bit words (120 bytes) from
each FIFO before switching to an alternate channel. This requires (30 x 10) = 300 ns/FIFO, and assume that it
takes the worst-case four clock cycles to switch to alternate channels. Therefore, the total servicing time per FIFO
is (300 + 4 x 10) = 340 ns/channel, and the total servicing time per four channels is (4 x 340) = 1.36
μ
s per round
robin servicing of all four channels. At this round-robin rate, a maximum of 120 bytes are serviced per channel per
1.360
μ
s interval; so to service the total bytes per channel (74.88 Mbytes/s), it requires a total of 0.849 seconds,
which is sufficient bandwidth to service all channels.
Since the FIFOs fill at the maximum rate of 1 byte/13.355 ns, each FIFO will fill to a depth of 102 bytes in the
1.360
μ
s interval between channel servicing. This is well below the overflow threshold, which is set by the user to a
value near the top of the FIFO (high watermark, 0x36 (216 bytes) default) and is below the number of bytes ser-
viced by the master per channel per round-robin servicing (120 bytes). Each customer’s servicing characteristics
will depend on the master’s behavior and how fast it performs the channel switching. If it cannot switch in the worst-
case, four-cycle manner described above, performance will degrade.
One item not accounted for in the above analysis is the fact that TDAT may place a dead cycle between packets (in
CRC and PPP modes, not in HDLC mode). In this case, there can be a maximum of three dead cycles per FIFO
(assuming 40-byte packets worst case and 102 bytes in FIFO between round-robin cycle). This will be taken up by
the slack provided above, where (102 bytes + 4 bytes/dead cycle x 3 dead cycles) = 114 bytes, which still falls
below the servicing rate of 120 bytes per round-robin servicing.
相關(guān)PDF資料
PDF描述
TDAT042G51A-3BLL1 TDAT SONET/SDH 155/622/2488 Mbits/s Data Interfaces
TE13004D Silicon NPN High Voltage Switching Transistor
TE13005D Silicon NPN High Voltage Switching Transistor
TEA1065 Versatile telephone transmission circuit with dialler interface
TEA1065T Versatile telephone transmission circuit with dialler interface
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
TDAT12622-BA23 制造商:AGERE 制造商全稱:AGERE 功能描述:MARS㈢2G5 P-Pro (TDAT162G52) SONET/SDH 155/622/2488 Mbits/s Data Interface
TDAT12622-BA23-DB 制造商:LSI Corporation 功能描述:SONET/SDH Interface 792-Pin BGA
TDAT161G2-BA23 制造商:AGERE 制造商全稱:AGERE 功能描述:MARS㈢2G5 P-Pro (TDAT162G52) SONET/SDH 155/622/2488 Mbits/s Data Interface
TDAT162G52 制造商:AGERE 制造商全稱:AGERE 功能描述:MARS㈢2G5 P-Pro (TDAT162G52) SONET/SDH 155/622/2488 Mbits/s Data Interface
TDAT162G52-3BA 制造商:AGERE 制造商全稱:AGERE 功能描述:MARS㈢2G5 P-Pro (TDAT162G52) SONET/SDH 155/622/2488 Mbits/s Data Interface