參數(shù)資料
型號(hào): AM79C978AKCW
廠商: ADVANCED MICRO DEVICES INC
元件分類: 微控制器/微處理器
英文描述: Single-Chip 1/10 Mbps PCI Home Networking Controller
中文描述: 5 CHANNEL(S), 10M bps, LOCAL AREA NETWORK CONTROLLER, PQFP160
封裝: PLASTIC, QFP-160
文件頁數(shù): 64/256頁
文件大?。?/td> 3505K
代理商: AM79C978AKCW
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁當(dāng)前第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁第211頁第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁第220頁第221頁第222頁第223頁第224頁第225頁第226頁第227頁第228頁第229頁第230頁第231頁第232頁第233頁第234頁第235頁第236頁第237頁第238頁第239頁第240頁第241頁第242頁第243頁第244頁第245頁第246頁第247頁第248頁第249頁第250頁第251頁第252頁第253頁第254頁第255頁第256頁
64
Am79C978A
Counters are provided to report the Receive Collision
Count and Runt Packet Count for network statistics
and utilization calculations.
Media Access Management
The basic requirement for all stations on the network is
to provide fairness of channel allocation. The IEEE
802.3/Ethernet protocols define a media access mech-
anism which permits all stations to access the channel
with equality. Any node can attempt to contend for the
channel by waiting for a predetermined time (Inter
Packet Gap) after the last activity, before transmitting
on the media. The channel is a multidrop communica-
tions media (with various topological configurations
permitted), which allows a single station to transmit and
all other stations to receive. If two nodes simulta-
neously contend for the channel, their signals will inter-
act causing loss of data, defined as a collision. It is the
responsibility of the MAC to attempt to avoid and
recover from a collision and to guarantee data integrity
for the end-to-end transmission to the receiving station.
Medium Allocation
The IEEE/ANSI 802.3 standard (ISO/IEC 8802-3 1990)
requires that the CSMA/CD MAC monitor the medium
for traffic by watching for carrier activity. When carrier
is detected, the media is considered busy, and the
MAC should defer to the existing message.
The ISO 8802-3 (IEEE/ANSI 802.3) standard also
allows optionally a two-part deferral after a receive
message.
See ANSI/IEEE Std 802.3-1993 Edition, 4.2.3.2.1:
Note:
“It is possible for the PLS carrier sense indica-
tion to fail to be asserted during a collision on the me-
dia. If the deference process simply times the inter-
frame gap based on this indication, it is possible for a
short interframe gap to be generated, leading to a po-
tential reception failure of a subsequent frame. To en-
hance system robustness, the following optional
measures (as specified in 4.2.8) are recommended
when InterFrameSpacingPart1 is other than 0:
1. Upon completing a transmission, start timing the in-
terrupted gap as soon as transmitting and carrier
sense are both false.
2. When timing an inter-frame gap following reception,
reset the inter-frame gap timing if carrier sense be-
comes true during the first 2/3 of the inter-frame gap
timing interval. During the final 1/3 of the interval,
the timer shall not be reset to ensure fair access to
the medium. An initial period shorter than 2/3 of the
interval is permissible including 0.”
The MAC engine implements the optional receive two-
part deferral algorithm, with an InterFrameSpacing-
Part1 time of 6.0 ms. The InterFrameSpacingPart 2 in-
terval is, therefore, 3.4 ms.
TheAm79C978A controller will perform the two-part
deferral algorithm as specified in the
Process Defer-
ence
section. The Inter Packet Gap (IPG) timer will
start timing the 9.6 ms InterFrameSpacing after the
receive carrier is deasserted. During the first part de-
ferral (InterFrameSpacingPart1 - IFS1), the
Am79C978A controller will defer any pending trans-
mit frame and respond to the receive message. The
IPG counter will be cleared to 0 continuously until the
carrier deasserts, at which point the IPG counter will
resume the 9.6 ms count once again. Once the IFS1
period of 6.0 ms has elapsed, the Am79C978A con-
troller will begin timing the second part deferral
(InterFrameSpacingPart2 - IFS2) of 3.4 ms. Once
IFS1 has completed and IFS2 has commenced, the
Am79C978A controller will not defer to a receive
frame if a transmit frame is pending. This means that
the Am79C978A controller will not attempt to receive
the receive frame, since it will start to transmit and
generate a collision at 9.6 ms. TheAm79C978A con-
troller will complete the preamble (64-bit) and jam
(32-bit) sequence before ceasing transmission and
invoking the random backoff algorithm.
TheAm79C978A controller allows the user to pro-
gram the IPG and the first-part deferral
(InterFrameSpacingPart1 - IFS1) through CSR125.
By changing the IPG default value of 96 bit times
(60h), the user can adjust the fairness or aggressive-
ness of the MAC on the network. By programming a
lower number of bit times than the ISO/IEC 8802-3
standard requires, the MAC engine will become
more aggressive on the network. This aggressive
nature will give rise to the Am79C978A controller
possibly capturing the network at times by forcing
other less aggressive compliant nodes to defer. By
programming a larger number of bit times, the MAC
will become less aggressive on the network and may
defer more often than normal. The performance of
the Am79C978A controller may decrease as the IPG
value is increased from the default value, but the re-
sulting behavior may improve network performance
by reducing collisions. TheAm79C978A controller
uses the same IPG for back-to-back transmits and
receive-to-transmit accesses. Changing IFS1 will
alter the period for which the MAC engine will defer
to incoming receive frames.
CAUTION: Care must be exercised when altering
these parameters
.
Adverse network activity could
result!
This transmit two-part deferral algorithm is imple-
mented as an option which can be disabled using the
DXMT2PD bit in CSR3. The IFS1 programming will
have no effect when DXMT2PD is set to 1, but the IPG
programming value is still valid. Two part deferral after
transmission is useful for ensuring that severe IPG
shrinkage cannot occur in specific circumstances,
相關(guān)PDF資料
PDF描述
AM79C978AVCW Single-Chip 1/10 Mbps PCI Home Networking Controller
AM79C978 Single-Chip 1/10 Mbps PCI Home Networking Controller
AM79C981 Integrated Multiport Repeater Plus⑩ (IMR+⑩)
AM79C981JC Integrated Multiport Repeater Plus⑩ (IMR+⑩)
AM79C982 basic Integrated Multiport Repeater (bIMR)
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AM79C978AVCW 制造商:AMD 制造商全稱:Advanced Micro Devices 功能描述:Single-Chip 1/10 Mbps PCI Home Networking Controller
AM79C978KC/W 制造商:AMD 制造商全稱:Advanced Micro Devices 功能描述:Single-Chip 1/10 Mbps PCI Home Networking Controller
AM79C978VC/W 制造商:AMD 制造商全稱:Advanced Micro Devices 功能描述:Single-Chip 1/10 Mbps PCI Home Networking Controller
AM79C979BKC\\W 制造商:Advanced Micro Devices 功能描述:
AM79C98 制造商:AMD 制造商全稱:Advanced Micro Devices 功能描述:Twisted-Pair Ethernet Transceiver (TPEX)