
[AK4671] 
MS0666-E-00 
2007/10 
- 66 - 
(5)
5-band Notch 
This block can be used as Equalizer or Notch Filter. 5-band Equalizer (EQ1, EQ2, EQ3, EQ4 and EQ5) is ON/OFF 
independently by EQ1, EQ2, EQ3, EQ4 and EQ5 bits. When Equalizer is OFF, the audio data passes this block by 0dB 
gain. E1A15-0, E1B15-0 and E1C15-0 bits set the coefficient of EQ1. E2A15-0, E2B15-0 and E2C15-0 bits set the 
coefficient of EQ2. E3A15-0, E3B15-0 and E3C15-0 bits set the coefficient of EQ3. E4A15-0, E4B15-0 and E4C15-0 
bits set the coefficient of EQ4. E5A15-0, E5B15-0 and E5C15-0 bits set the coefficient of EQ5. The EQx (x=1
~
5) 
coefficient should be set when EQx bit = 
“
0
”
 or PMADL=PMADR=PMDAL=PMDAR bits = “0”. 
fs: Sampling frequency 
fo
1
 ~ fo
5
: Center frequency 
fb
1
 ~ fb
5
: Band width where the gain is 3dB different from center frequency 
K
1
 ~ K
5
 : Gain (
1 
≤
 K
n
≤
 3) 
Register setting (
Note 61
) 
EQ1: E1A[15:0] bits =A
1
, E1B[15:0] bits =B
1
, E1C[15:0] bits =C
1
EQ2: E2A[15:0] bits =A
2
, E2B[15:0] bits =B
2
, E2C[15:0] bits =C
2
EQ3: E3A[15:0] bits =A
3
, E3B[15:0] bits =B
3
, E3C[15:0] bits =C
3
EQ4: E4A[15:0] bits =A
4
, E4B[15:0] bits =B
4
, E4C[15:0] bits =C
4
EQ5: E5A[15:0] bits =A
5
, E5B[15:0] bits =B
5
, E5C[15:0] bits =C
5
(MSB=E1A15, E1B15, E1C15, E2A15, E2B15, E2C15, E3A15, E3B15, E3C15, E4A15, E4B15, E4C15, 
E5A15, E5B15, E5C15; LSB= E1A0, E1B0, E1C0, E2A0, E2B0, E2C0, E3A0, E3B0, E3C0, E4A0, E4B0, 
E4C0, E5A0, E5B0, E5C0) 
A
n
 = K
n
 x 
1 + tan (
π
fb
n
/fs) 
tan (
π
fb
n
/fs)  
B
n
 = cos(2
π
 fo
n
/fs) x 
2 
1 + tan (
π
fb
n
/fs)
, 
C
n
 =  
1 
 tan (
π
fb
n
/fs) 
1 + tan (
π
fb
n
/fs)
, 
(n = 1, 2, 3, 4, 5) 
Transfer function 
H(z) = 1 + h
1
(z) + h
2
(z) + h
3
(z) + h
4
(z) + h
5
(z)  
h
n
 (z) = A
n
1 
 z 
2
1
 B
n
z 
1
 C
n
z 
2
(n = 1, 2, 3, 4, 5) 
The center frequency should be set as below. 
fo
n
 / fs < 0.497 
Note 61. [Translation the filter coefficient calculated by the equations above from real number to binary code (2’s 
complement)] 
X = (Real number of filter coefficient calculated by the equations above) x 2
13
X should be rounded to integer, and then should be translated to binary code (2’s complement). 
MSB of each filter coefficient setting register is sine bit.