supply using the 0 to VREF
鍙冩暩(sh霉)璩囨枡
鍨嬭櫉(h脿o)锛� ADSP-BF506BSWZ-4F
寤犲晢锛� Analog Devices Inc
鏂囦欢闋�(y猫)鏁�(sh霉)锛� 61/80闋�(y猫)
鏂囦欢澶�?銆�?/td> 0K
鎻忚堪锛� IC DSP 400MHZ 1.4V 120LQFP
瑕栭牷鏂囦欢锛� Blackfin? BF50x Processor Family
妯�(bi膩o)婧�(zh菙n)鍖呰锛� 1
绯诲垪锛� Blackfin®
椤炲瀷锛� 瀹氶粸(di菐n)
鎺ュ彛锛� CAN锛孍BI/EMI锛孖²C锛孖rDA锛孭PI锛孲PI锛孲PORT锛孶ART/USART
鏅�(sh铆)閻橀€熺巼锛� 400MHz
闈炴槗澶卞収(n猫i)瀛橈細 闁冨瓨锛�16MB锛�
鑺墖涓奟AM锛� 68kB
闆诲 - 杓稿叆/杓稿嚭锛� 3.30V
闆诲 - 鏍稿績锛� 1.29V
宸ヤ綔婧害锛� -40°C ~ 85°C
瀹夎椤炲瀷锛� 琛ㄩ潰璨艰
灏佽/澶栨锛� 120-LQFP 瑁搁湶鐒婄洡
渚涙噳(y墨ng)鍟嗚ō(sh猫)鍌欏皝瑁濓細 120-LQFP-EP锛�14x14锛�
鍖呰锛� 鎵樼洡
绗�1闋�(y猫)绗�2闋�(y猫)绗�3闋�(y猫)绗�4闋�(y猫)绗�5闋�(y猫)绗�6闋�(y猫)绗�7闋�(y猫)绗�8闋�(y猫)绗�9闋�(y猫)绗�10闋�(y猫)绗�11闋�(y猫)绗�12闋�(y猫)绗�13闋�(y猫)绗�14闋�(y猫)绗�15闋�(y猫)绗�16闋�(y猫)绗�17闋�(y猫)绗�18闋�(y猫)绗�19闋�(y猫)绗�20闋�(y猫)绗�21闋�(y猫)绗�22闋�(y猫)绗�23闋�(y猫)绗�24闋�(y猫)绗�25闋�(y猫)绗�26闋�(y猫)绗�27闋�(y猫)绗�28闋�(y猫)绗�29闋�(y猫)绗�30闋�(y猫)绗�31闋�(y猫)绗�32闋�(y猫)绗�33闋�(y猫)绗�34闋�(y猫)绗�35闋�(y猫)绗�36闋�(y猫)绗�37闋�(y猫)绗�38闋�(y猫)绗�39闋�(y猫)绗�40闋�(y猫)绗�41闋�(y猫)绗�42闋�(y猫)绗�43闋�(y猫)绗�44闋�(y猫)绗�45闋�(y猫)绗�46闋�(y猫)绗�47闋�(y猫)绗�48闋�(y猫)绗�49闋�(y猫)绗�50闋�(y猫)绗�51闋�(y猫)绗�52闋�(y猫)绗�53闋�(y猫)绗�54闋�(y猫)绗�55闋�(y猫)绗�56闋�(y猫)绗�57闋�(y猫)绗�58闋�(y猫)绗�59闋�(y猫)绗�60闋�(y猫)鐣�(d膩ng)鍓嶇61闋�(y猫)绗�62闋�(y猫)绗�63闋�(y猫)绗�64闋�(y猫)绗�65闋�(y猫)绗�66闋�(y猫)绗�67闋�(y猫)绗�68闋�(y猫)绗�69闋�(y猫)绗�70闋�(y猫)绗�71闋�(y猫)绗�72闋�(y猫)绗�73闋�(y猫)绗�74闋�(y猫)绗�75闋�(y猫)绗�76闋�(y猫)绗�77闋�(y猫)绗�78闋�(y猫)绗�79闋�(y猫)绗�80闋�(y猫)
Rev. A
|
Page 64 of 80
|
July 2011
ADSP-BF504/ADSP-BF504F/ADSP-BF506F
supply using the 0 to VREF range or 2 脳 VREF range, respectively.
The common mode must be in this range to guarantee the func-
tionality of the ADC.
When a conversion takes place, the common mode is rejected,
resulting in a virtually noise free signal of amplitude 鈥揤REF to
+VREF corresponding to the digital codes of 0 to 4096. If the 2 脳
VREF range is used, then the input signal amplitude extends from
鈥� 2 VREF to +2 VREF after conversion.
Driving Differential Inputs
Differential operation requires that VIN+ and VIN鈥� be simultane-
ously driven with two equal signals that are 180掳 out of phase.
The common mode must be set up externally. The common-
mode range is determined by VREF, the power supply, and the
particular amplifier used to drive the analog inputs. Differential
modes of operation with either an ac or dc input provide the
best THD performance over a wide frequency range. Because
not all applications have a signal preconditioned for differential
operation, there is often a need to perform single-ended-to-dif-
ferential conversion.
Using an Op Amp Pair
An op amp pair can be used to directly couple a differential sig-
nal to one of the analog input pairs of the ADC. The circuit
configurations illustrated in Figure 72 (Dual Op Amp Circuit to
how a dual op amp can be used to convert a single-ended signal
into a differential signal for both a bipolar and unipolar input
signal, respectively.
The voltage applied to Point A sets up the common-mode volt-
age. In both diagrams, it is connected in some way to the
reference, but any value in the common-mode range can be
input here to set up the common mode. The AD8022 is a suit-
able dual op amp that can be used in this configuration to
provide differential drive to the ADC.
Take care when choosing the op amp; the selection depends on
the required power supply and system performance objectives.
for dc coupling applications requiring best distortion
performance.
The circuit configuration shown in Figure 72 (Dual Op Amp
ential Signal) converts a unipolar, single-ended signal into a
differential signal.
The differential op amp driver circuit shown in Figure 73 (Dual
Differential Unipolar Signal) is configured to convert and level
shift a single-ended, ground-referenced (bipolar) signal to a dif-
ferential signal centered at the VREF level of the ADC.
Pseudo Differential Mode
The ADC can have a total of six pseudo differential pairs. In this
mode, VIN+ is connected to the signal source that must have an
amplitude of VREF (or 2 脳 VREF, depending on the range chosen)
Figure 70. Input Common-Mode Range vs. VREF (0 to VREF Range, VDD = 5 V)
Figure 71. Input Common-Mode Range vs. VREF (2 脳 VREF Range, VDD = 5 V)
VREF (V)
5.0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
COMMON-MODE
RANGE
(V)
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
TA = 25掳C
VREF (V)
2.5
0
0.5
1.0
1.5
2.0
COMMON-MODE
RANGE
(V)
5.0
4.0
4.5
3.0
3.5
2.0
2.5
0.5
1.0
1.5
0
TA = 25掳C
Figure 72. Dual Op Amp Circuit to Convert a Single-Ended Unipolar Signal
Into a Differential Signal
GND
2 脳 VREF p鈥損
27
V+
V鈥�
V+
V鈥�
VREF
2.5V
3.75V
1.25V
2.5V
3.75V
1.25V
VREF
(DCAPA/DCAPB)
VIN+
ADC
1
VIN鈥�
440
220
0.47F
1ADDITIONAL PINS OMITTED FOR CLARITY.
220
10k
A
鐩搁棞(gu膩n)PDF璩囨枡
PDF鎻忚堪
GMC60DREH-S734 CONN EDGECARD 120PS .100 EYELET
XC95288XL-10FGG256C IC CPLD 288MCELL 10NS 256-FBGA
HMC05DRXH CONN EDGECARD 10POS DIP .100 SLD
RGM43DRSD-S288 CONN EDGECARD 86POS .156 EXTEND
VE-B5K-CY-F1 CONVERTER MOD DC/DC 40V 50W
鐩搁棞(gu膩n)浠g悊鍟�/鎶€琛�(sh霉)鍙冩暩(sh霉)
鍙冩暩(sh霉)鎻忚堪
ADSP-BF506BSWZ-4FX 鍒堕€犲晢:Analog Devices 鍔熻兘鎻忚堪:- Trays
ADSP-BF506F 鍒堕€犲晢:Analog Devices 鍔熻兘鎻忚堪:LOW POWER BLACKFIN WITH ADVANCED EMBEDDED CONNECTIVITY - Bulk
ADSPBF506FBSWZ-ENG 鍒堕€犲晢:Analog Devices 鍔熻兘鎻忚堪:- Trays
ADSP-BF506KSWZ-3F 鍔熻兘鎻忚堪:IC DSP 12BIT 300MHZ 120LQFP RoHS:鏄� 椤炲垾:闆嗘垚闆昏矾 (IC) >> 宓屽叆寮� - DSP锛堟暩(sh霉)瀛楀紡淇¤櫉(h脿o)铏曠悊鍣級 绯诲垪:Blackfin® 妯�(bi膩o)婧�(zh菙n)鍖呰:2 绯诲垪:StarCore 椤炲瀷:SC140 鍏�(n猫i)鏍� 鎺ュ彛:DSI锛屼互澶恫(w菐ng)锛孯S-232 鏅�(sh铆)閻橀€熺巼:400MHz 闈炴槗澶卞収(n猫i)瀛�:澶栭儴 鑺墖涓奟AM:1.436MB 闆诲 - 杓稿叆/杓稿嚭:3.30V 闆诲 - 鏍稿績:1.20V 宸ヤ綔婧害:-40°C ~ 105°C 瀹夎椤炲瀷:琛ㄩ潰璨艰 灏佽/澶栨:431-BFBGA锛孎(xi脿n)CBGA 渚涙噳(y墨ng)鍟嗚ō(sh猫)鍌欏皝瑁�:431-FCPBGA锛�20x20锛� 鍖呰:鎵樼洡
ADSP-BF506KSWZ-4F 鍔熻兘鎻忚堪:IC DSP 12BIT 400MHZ 120LQFP RoHS:鏄� 椤炲垾:闆嗘垚闆昏矾 (IC) >> 宓屽叆寮� - DSP锛堟暩(sh霉)瀛楀紡淇¤櫉(h脿o)铏曠悊鍣級 绯诲垪:Blackfin® 妯�(bi膩o)婧�(zh菙n)鍖呰:2 绯诲垪:StarCore 椤炲瀷:SC140 鍏�(n猫i)鏍� 鎺ュ彛:DSI锛屼互澶恫(w菐ng)锛孯S-232 鏅�(sh铆)閻橀€熺巼:400MHz 闈炴槗澶卞収(n猫i)瀛�:澶栭儴 鑺墖涓奟AM:1.436MB 闆诲 - 杓稿叆/杓稿嚭:3.30V 闆诲 - 鏍稿績:1.20V 宸ヤ綔婧害:-40°C ~ 105°C 瀹夎椤炲瀷:琛ㄩ潰璨艰 灏佽/澶栨:431-BFBGA锛孎(xi脿n)CBGA 渚涙噳(y墨ng)鍟嗚ō(sh猫)鍌欏皝瑁�:431-FCPBGA锛�20x20锛� 鍖呰:鎵樼洡