參數(shù)資料
型號: MC80C52XXX-16/883
廠商: TEMIC SEMICONDUCTORS
元件分類: 微控制器/微處理器
英文描述: 8-BIT, MROM, 16 MHz, MICROCONTROLLER, CDIP40
文件頁數(shù): 113/204頁
文件大?。?/td> 5687K
代理商: MC80C52XXX-16/883
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁當(dāng)前第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁
20
ATtiny40 [DATASHEET]
8263B–AVR–01/2013
6.3
System Clock Prescaler
The system clock is derived from the main clock via the System Clock Prescaler. The system clock can be divided
by setting the “CLKPSR – Clock Prescale Register” on page 22. The system clock prescaler can be used to
decrease power consumption at times when requirements for processing power is low or to bring the system clock
within limits of maximum frequency. The prescaler can be used with all main clock source options, and it will affect
the clock frequency of the CPU and all synchronous peripherals.
The System Clock Prescaler can be used to implement run-time changes of the internal clock frequency while still
ensuring stable operation.
6.3.1
Switching Prescaler Setting
When switching between prescaler settings, the system clock prescaler ensures that no glitch occurs in the system
clock and that no intermediate frequency is higher than neither the clock frequency corresponding the previous set-
ting, nor the clock frequency corresponding to the new setting.
The ripple counter that implements the prescaler runs at the frequency of the main clock, which may be faster than
the CPU's clock frequency. Hence, it is not possible to determine the state of the prescaler - even if it were read-
able, and the exact time it takes to switch from one clock division to another cannot be exactly predicted.
From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2*T2 before the new clock fre-
quency is active. In this interval, two active clock edges are produced. Here, T1 is the previous clock period, and
T2 is the period corresponding to the new prescaler setting.
6.4
Starting
6.4.1
Starting from Reset
The internal reset is immediately asserted when a reset source goes active. The internal reset is kept asserted until
the reset source is released and the start-up sequence is completed. The start-up sequence includes three steps,
as follows.
1.
The first step after the reset source has been released consists of the device counting the reset start-up
time. The purpose of this reset start-up time is to ensure that supply voltage has reached sufficient levels.
The reset start-up time is counted using the internal 128 kHz oscillator. See Table 6-1 for details of reset
start-up time.
Note that the actual supply voltage is not monitored by the start-up logic. The device will count until the
reset start-up time has elapsed even if the device has reached sufficient supply voltage levels earlier.
2.
The second step is to count the oscillator start-up time, which ensures that the calibrated internal oscilla-
tor has reached a stable state before it is used by the other parts of the system. The calibrated internal
oscillator needs to oscillate for a minimum number of cycles before it can be considered stable. See Table
6-1 for details of the oscillator start-up time.
3.
The last step before releasing the internal reset is to load the calibration and the configuration values from
the Non-Volatile Memory to configure the device properly. The configuration time is listed in Table 6-1.
Notes:
1. After powering up the device or after a reset the system clock is automatically set to calibrated internal 8 MHz oscil-
lator, divided by 8
2. When the Brown-out Detection is enabled, the reset start-up time is 128 ms after powering up the device.
Table 6-1.
Start-up Times when Using the Internal Calibrated Oscillator
Reset
Oscillator
Configuration
Total start-up time
64 ms
6 cycles
21 cycles
64 ms + 6 oscillator cycles + 21 system clock cycles (1)(2)
相關(guān)PDF資料
PDF描述
MQ83C154XXX-16/883D 8-BIT, MROM, 16 MHz, MICROCONTROLLER, CQFP44
MR87C251SB16 8-BIT, UVPROM, 16 MHz, MICROCONTROLLER, CQCC44
MC87C251SB16 8-BIT, UVPROM, 16 MHz, MICROCONTROLLER, CDIP40
MR87C51FC 8-BIT, UVPROM, MICROCONTROLLER, CQCC44
MD87C51FC-16 8-BIT, UVPROM, 16 MHz, MICROCONTROLLER, CDIP40
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MC80D21000G 制造商:COR 功能描述:RN
MC80F0104 制造商:未知廠家 制造商全稱:未知廠家 功能描述:8-BIT SINGLE-CHIP MICROCONTROLLERS
MC80F0104B 制造商:未知廠家 制造商全稱:未知廠家 功能描述:8-BIT SINGLE-CHIP MICROCONTROLLERS
MC80F0104D 制造商:未知廠家 制造商全稱:未知廠家 功能描述:8-BIT SINGLE-CHIP MICROCONTROLLERS
MC80F0204 制造商:未知廠家 制造商全稱:未知廠家 功能描述:8-BIT SINGLE-CHIP MICROCONTROLLERS