參數(shù)資料
型號(hào): ADUC7032BSTZ-88
廠商: Analog Devices Inc
文件頁(yè)數(shù): 75/120頁(yè)
文件大?。?/td> 0K
描述: IC MCU 96K FLASH DUAL 48LQFP
標(biāo)準(zhǔn)包裝: 1
系列: MicroConverter® ADuC7xxx
核心處理器: ARM7
芯體尺寸: 16/32-位
速度: 20.48MHz
連通性: LIN,SPI,UART/USART
外圍設(shè)備: POR,PSM,溫度傳感器,WDT
輸入/輸出數(shù): 9
程序存儲(chǔ)器容量: 96KB(48K x 16)
程序存儲(chǔ)器類型: 閃存
RAM 容量: 1.5K x 32
電壓 - 電源 (Vcc/Vdd): 3.5 V ~ 18 V
數(shù)據(jù)轉(zhuǎn)換器: A/D 2x16b
振蕩器型: 內(nèi)部
工作溫度: -40°C ~ 105°C
封裝/外殼: 48-LQFP
包裝: 托盤
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)當(dāng)前第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)
ADuC7032-8L
Rev. A | Page 58 of 120
ADC Calibration
As described in detail in the top level diagrams (Figure 15 and
Figure 16), the signal flow through all ADC channels can be
described in simple terms.
1.
An input voltage is applied through an input buffer (and
PGA in the case of the I-ADC) to the Σ-Δ modulator.
2.
The modulator output is applied to a programmable digital
decimation filter.
3.
The filter output result is then averaged if chopping is used.
4.
An offset value (ADCxOF) is subtracted from the result.
5.
This result is scaled by a gain value (ADCxGN).
6.
Finally, the result is formatted as twos complement/offset
binary, rounded to 16 bits, or clamped to ±full scale.
Each ADC has a specific offset and gain correction or calibration
coefficient associated with it that is stored in MMR-based offset
and gain registers (ADCxOF and ADCxGN). The offset and
gain registers can be used to remove offset and gain errors
arising within the part, as well as system-level offset and gain
errors external to the part.
These registers are configured at power-on with a factory-
programmed calibration value. These factory calibration values
vary from part to part, reflecting the manufacturing variability of
internal ADC circuits. However, these registers can also be
overwritten by user code (only if the ADC is in idle mode) and
are automatically overwritten if an offset or gain calibration cycle
is initiated by the user via the mode bits in the ADCMDE[2:0]
MMR. Two types of automatic calibration are available to the user.
Self- (Offset or Gain) Calibration
The ADC generates its calibration coefficient based on an
internally generated 0 V in the case of self-offset calibration,
and full-scale voltage in the case of self-gain calibration. It should
be emphasized that ADC self-calibrations correct for offset and
gain errors within the ADC. Self-calibrations cannot compensate
for other external errors in the system, for example, shunt-
resistor tolerance/drift, external offset voltages, and so on.
System (Offset or Gain) Calibration
The ADC generates its calibration coefficient based on an exter-
nally generated zero-scale voltage in the case of system-offset
calibration and full-scale voltage in the case of system-gain
calibration, which are applied to the external ADC input for the
duration of the calibration cycle.
The duration of an offset calibration is one single conversion
cycle (3/fADC chop off, 2/fADC chop on) before returning the
ADC to idle mode. A gain calibration is a two-stage process
that, subsequently, takes twice as long as an offset calibration
cycle. Once a calibration cycle is initiated, any ongoing ADC
conversion is immediately halted, the calibration is carried out
automatically at an ADC update rate programmed into ADCFLT,
and the ADC is always returned to idle after any calibration
cycle. It is strongly recommended that ADC calibration be
initiated at as low an ADC update rate as possible (high SF
value in ADCFLT) to minimize the impact of ADC noise
during calibration.
Note that in self-calibration mode, ADC0GN must first contain
the values for PGA = 1 before a calibration scheme is started.
Using the Offset and Gain Calibration Registers
If the chop bit (ADCFLT[15]) is enabled, internal ADC offset
errors are minimized, and an offset calibration may not be
required. If chopping is disabled however, an initial offset
calibration is required and may need to be repeated, particularly
after a large change in temperature.
A gain calibration, particularly in the context of the I-ADC
(with internal PGA) may need to be carried out at all relevant
system gain ranges, depending on system accuracy requirements.
If it is not possible to apply an external full-scale current on all
gain ranges, it is possible to apply a lower current and scale the
result produced by the calibration. For example, apply a 50%
current and then divide the ADC0GN value produced by 2 and
write this value back into ADC0GN. Note that there is a lower
limit to the input signal that can be applied for a system calibration
because the ADC0GN register is only 16 bits. The input span
(the difference between the system zero-scale value and the
system full-scale value) should be greater than 40% of the
nominal full-scale input range, that is, >40% of VREF/GAIN.
The on-chip Flash/EE memory can be used to store multiple
calibration coefficients that can be copied by user code directly
into the relevant calibration registers, as appropriate, based on
system configuration. In general, the simplest way to use the
calibration registers is to let the ADC calculate the values
required as part of the ADC automatic calibration modes.
相關(guān)PDF資料
PDF描述
ADUC7032BSTZ-8V-RL IC BATTERY SENSOR PREC 48-LQFP
ADUC7034BCPZ IC MCU FLASH 32K ANLG IO 48LFCSP
ADUC7036CCPZ IC MCU 96K FLASH DUAL 48LFCSP
ADUC7039BCP6Z-RL IC MCU ARM7 BATT SENSER 32LFCSP
ADUC7061BCPZ32 IC MCU 16/32BIT 32KB 32LFCSP
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
ADUC7032BSTZ-88-RL 功能描述:IC MCU 96K FLASH DUAL 48LQFP RoHS:是 類別:集成電路 (IC) >> 嵌入式 - 微控制器, 系列:MicroConverter® ADuC7xxx 標(biāo)準(zhǔn)包裝:38 系列:Encore!® XP® 核心處理器:eZ8 芯體尺寸:8-位 速度:5MHz 連通性:IrDA,UART/USART 外圍設(shè)備:欠壓檢測(cè)/復(fù)位,LED,POR,PWM,WDT 輸入/輸出數(shù):16 程序存儲(chǔ)器容量:4KB(4K x 8) 程序存儲(chǔ)器類型:閃存 EEPROM 大小:- RAM 容量:1K x 8 電壓 - 電源 (Vcc/Vdd):2.7 V ~ 3.6 V 數(shù)據(jù)轉(zhuǎn)換器:- 振蕩器型:內(nèi)部 工作溫度:-40°C ~ 105°C 封裝/外殼:20-SOIC(0.295",7.50mm 寬) 包裝:管件 其它名稱:269-4116Z8F0413SH005EG-ND
ADUC7032BSTZ-8L 制造商:Analog Devices 功能描述:FLASH 96K ARM7 TRIPLE 16-BIT ADC LIN IC. - Trays
ADUC7032BSTZ-8L-RL 制造商:Analog Devices 功能描述:FLASH 96K ARM7 TRIPLE 16-BIT ADC LIN IC. - Tape and Reel
ADUC7032BSTZ-8V 制造商:Analog Devices 功能描述: 制造商:Rochester Electronics LLC 功能描述:
ADUC7032BSTZ-8V-RL 功能描述:IC BATTERY SENSOR PREC 48-LQFP RoHS:是 類別:集成電路 (IC) >> 嵌入式 - 微控制器, 系列:MicroConverter® ADuC7xxx 標(biāo)準(zhǔn)包裝:1,500 系列:AVR® ATtiny 核心處理器:AVR 芯體尺寸:8-位 速度:16MHz 連通性:I²C,LIN,SPI,UART/USART,USI 外圍設(shè)備:欠壓檢測(cè)/復(fù)位,POR,PWM,溫度傳感器,WDT 輸入/輸出數(shù):16 程序存儲(chǔ)器容量:8KB(4K x 16) 程序存儲(chǔ)器類型:閃存 EEPROM 大小:512 x 8 RAM 容量:512 x 8 電壓 - 電源 (Vcc/Vdd):2.7 V ~ 5.5 V 數(shù)據(jù)轉(zhuǎn)換器:A/D 11x10b 振蕩器型:內(nèi)部 工作溫度:-40°C ~ 125°C 封裝/外殼:20-SOIC(0.295",7.50mm 寬) 包裝:帶卷 (TR)