
3-19
Signal Descriptions
Bus 0 to Bus 7 (Data Bus)
8-bit bidirectional DATA BUS lines. These lines are used for
transferring data between the memory, the microprocessor,
and I/O devices.
N0 to N2 (I/O Control Lines)
Activated by an I/O instruction to signal the I/O control logic of
a data transfer between memory and I/O interface. These
lines can be used to issue command codes or device selec-
tion codes to the I/O devices (independently or combined with
the memory byte on the data bus when an I/O instruction is
being executed). The N bits are low at all times except when
an I/O instruction is being executed. During this time their
state is the same as the corresponding bits in the N register.
The direction of data flow is defined in the I/O instruction by bit
N3 (internally) and is indicated by the level of the MRD signal.
MRD = V
CC
: Data from I/O to CPU and Memory
MRD = V
SS
: Data from Memory to I/O
EF1 to EF4 (4 Flags)
These inputs enable the I/O controllers to transfer status
information to the processor. The levels can be tested by the
conditional branch instructions. They can be used in con-
junction with the INTERRUPT request line to establish inter-
rupt priorities. These flags can also be used by I/O devices
to “call the attention” of the processor, in which case the pro-
gram must routinely test the status of these flag(s). The
flag(s) are sampled at the beginning of every S1 cycle.
INTERRUPT, DMA-lN, DMA-OUT (3 I/O Requests)
These inputs are sampled by the CPU during the interval
between the leading edge of TPB and the leading edge of
TPA.
Interrupt Action
- X and P are stored in T after executing
current instruction; designator X is set to 2; designator P is
set to 1; interrupt enable is reset to 0 (inhibit); and instruction
execution is resumed. The interrupt action requires one
machine cycle (S3).
DMA Action
- Finish executing current instruction; R(0)
points to memory area for data transfer; data is loaded into
or read out of memory; and increment R(0).
NOTE: In the event of concurrent DMA and Interrupt requests,
DMA-lN has priority followed by DMA-OUT and then Interrupt.
SC0, SC1, (2 State Code Lines)
These outputs indicate that the CPU is: 1) fetching an
instruction, or 2) executing an instruction, or 3) processing a
DMA request, or 4) acknowledging an interrupt request. The
levels of state code are tabulated below. All states are valid
at TPA. H = V
CC
, L = V
SS
.
TPA, TPB (2 Timing Pulses)
Positive pulses that occur once in each machine cycle (TPB
follows TPA). They are used by I/O controllers to interpret
codes and to time interaction with the data bus. The trailing
edge of TPA is used by the memory system to latch the
higher-order byte of the 16-bit memory address. TPA is sup-
pressed in IDLE when the CPU is in the load mode.
NOTE: IDLE = “00” AT M(0000), BRANCH = “3707” AT M(8107), CL = 50pF
FIGURE 23. TYPICAL POWER DISSIPATION AS A FUNCTION OF CLOCK FREQUENCY FOR BRANCH INSTRUCTION AND IDLE
INSTRUCTION FOR ALL TYPES
Performance Curves
(Continued)
T
A
= 25
o
C
P
D
,
F
f
CL
, CLOCK INPUT FREQUENCY (MHz)
0.01
0.1
1
10
0.1
1
10
100
1000
V
CC
= V
DD
= 10V
BRANCH
IDLE
V
CC
= V
DD
= 5V
STATE TYPE
STATE CODE LINES
SC1
SC0
S0 (Fetch)
L
L
S1 (Execute)
L
H
S2 (DMA)
H
L
S3 (Interrupt)
H
H
CDP1802A, CDP1802AC, CDP1802BC