參數(shù)資料
型號(hào): AM486DX2
廠商: Advanced Micro Devices, Inc.
英文描述: Am5X86⑩ Microprocessor Family
中文描述: Am5X86⑩微處理器家族
文件頁(yè)數(shù): 22/67頁(yè)
文件大?。?/td> 1613K
代理商: AM486DX2
22
Am5
X
86 Microprocessor
AMD
PRELIMINARY
4.8.2.2
The HOLD/HLDA bus arbitration scheme is used prima-
rily in systems where all memory transfers are seen by
the microprocessor. The HOLD/HLDA bus arbitration
scheme permits simple write-back cache design while
maintaining a relatively high performing system. Figure
3 shows a typical system block diagram for HOLD/HLDA
bus arbitration.
HOLD Bus Arbitration Implementation
Note:
To maintain proper system timing, the HOLD
signal must remain active for one clock cycle after HITM
transitions active. Deassertion of HOLD in the same
clock cycle as HITM assertion may ead o unpredictable
processor behavior.
4.8.2.2.1 Processor-Induced Bus Cycles
In the following scenarios, read accesses are assumed
to be cache line fills. The cases also assume that the
core system logic does not return BRDY or RDY until
HITM is sampled. The addition of wait states follows the
standard 486 bus protocol. For demonstration purpos-
es, only the zero wait state approach is shown. Table 6
explains the key to switching waveforms.
CPU
L2 Cache
DRAM
Local Bus
Peripheral
I/O Bus
Interface
Slow
Peripheral
Address Bus
Data Bus
Address Bus
Data Bus
Figure 3. Typical System Block Diagram
for HOLD/HLDA Bus Arbitration
.
4.8.2.2.2 External Read
Scenario:
The data resides in external memory (see
Figure 4).
Step 1 The processor starts the external read access
by asserting ADS = 0 and W/R = 0.
Step 2 WB/WT is sampled in the same cycle as BRDY.
If WB/WT = 1, the data resides in a write-back
cacheable memory location.
Step 3 The processor completes its burst read and as-
serts BLAST.
4.8.2.2.3 External Write
Scenario:
The data is written to the external memory
(see Figure 5).
Step 1 The processor starts the external write access
by asserting ADS = 0 and W/R = 1.
Step 2 The processor completes its write to the core
system logic.
4.8.2.2.4 HOLD/HLDA External Access TIming
In systems with two or more bus masters, each bus
master is equipped with individual HOLD and HLDA con-
trol signals. These signals are then centralized to the
core system logic that controls individual bus masters,
depending on bus request signals and the HITM signal.
Table 6. Key to Switching Waveforms
Waveform
Inputs
Outputs
Must be steady
Will be steady
May change from
H to L
Will change
from H to L
May change from
L to H
Will change
from L to H
Don’t care; any
change permitted
Changing;
state unknown
Does not apply
Center line is
High-impedance
“Off” state
相關(guān)PDF資料
PDF描述
AM486DX4 High-Performance, Clock-Selectable, 3.3 V, 32-Bit Microprocessor(3.3V高性能時(shí)鐘可選32位微處理器)
AM49DL320BGB701S 32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 32 Mbit (2M x 16-Bit) Pseudo Static RAM
AM49DL320BGB701T 32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 32 Mbit (2M x 16-Bit) Pseudo Static RAM
AM49DL320BGB851S 32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 32 Mbit (2M x 16-Bit) Pseudo Static RAM
AM49DL320BGB851T 32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation Flash Memory and 32 Mbit (2M x 16-Bit) Pseudo Static RAM
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AM486DX2-66V16BGC 制造商:Advanced Micro Devices 功能描述:MPU AM486 RISC 32-Bit 0.35um 66MHz 5V 168-Pin PGA
AM486DX2-66V16BGI 制造商:Advanced Micro Devices 功能描述:MPU AM486 RISC 32-Bit 0.35um 66MHz 5V 168-Pin PGA
AM486DX2-66V16BHI 制造商:Advanced Micro Devices 功能描述:MPU AM486 RISC 32-Bit 0.35um 66MHz 5V 208-Pin SQFP
AM486DX4100C16BGI 制造商:AMD 功能描述:*
AM486DX5-133V16BHC 制造商:Advanced Micro Devices 功能描述:MPU AM486 RISC 32-Bit 0.35um 133MHz 5V 208-Pin SQFP