參數(shù)資料
型號(hào): AM29SL800CB-100ED
廠商: SPANSION LLC
元件分類: PROM
英文描述: 512K X 16 FLASH 1.8V PROM, 100 ns, PDSO48
封裝: MO-142DD, TSOP-48
文件頁(yè)數(shù): 8/43頁(yè)
文件大?。?/td> 960K
代理商: AM29SL800CB-100ED
16
The reset command may be written between the
sequence cycles in an erase command sequence
before erasing begins. This resets the device to reading
array data. Once erasure begins, however, the device
ig nores re se t comma nds until the op eration is
complete.
The reset command may be written between the
sequence cycles in a program command sequence
before programming begins. This resets the device to
reading array data (also applies to programming in
Erase Suspend mode). Once programming begins,
however, the device ignores reset commands until the
operation is complete.
The reset command may be written between the
sequence cycles in an autoselect command sequence.
Once in the autoselect mode, the reset command
must
be written to return to reading array data (also applies
to autoselect during Erase Suspend).
If DQ5 goes high during a program or erase operation,
writing the reset command returns the device to
read ing array da ta (also applies du r ing Eras e
Suspend).
Autoselect Command Sequence
The autoselect command sequence allows the host
system to access the manufacturer and devices codes,
and determine whether or not a sector is protected.
Table 5 shows the address and data requirements. This
method is an alternative to that shown in Table 4, which
is intended for PROM programmers and requires VID
on address bit A9.
The autoselect command sequence is initiated by
writing two unlock cycles, followed by the autoselect
command. The device then enters the autoselect
mode, and the system may read at any address any
number of times, without initiating another command
sequence. A read cycle at address XX00h retrieves the
manufacturer code. A read cycle at address 01h in
word mode (or 02h in byte mode) returns the device
code. A read cycle containing a sector address (SA)
and the address 02h in word mode (or 04h in byte
mode) returns 01h if that sector is protected, or 00h if it
is unprotected. Refer to Tables 2 and 3 for valid sector
addresses.
The system must write the reset command to exit the
autoselect mode and return to reading array data.
Word/Byte Program Command Sequence
The system may program the device by word or byte,
depending on the state of the BYTE# pin. Program-
ming is a four-bus-cycle operation. The program
command sequence is initiated by writing two unlock
write cycles, followed by the program set-up command.
The program address and data are written next, which
in turn initiate the Embedded Program algorithm. The
system is
not required to provide further controls or tim-
ings. The device automatically generates the program
pulses and verifies the programmed cell margin. Table
5 shows the address and data requirements for the
byte program command sequence.
When the Embedded Program algorithm is complete,
the device then returns to reading array data and
addresses are no longer latched. The system can
determine the status of the program operation by using
DQ7, DQ6, or RY/BY#. See “Write Operation Status”
for information on these status bits.
Any commands written to the device during the
Embedded Program Algorithm are ignored. Note that a
hardware reset immediately terminates the program-
ming op era t io n . The By t e P r ogra m c o mmand
sequence should be reinitiated once the device has
reset to reading array data, to ensure data integrity.
Programming is allowed in any sequence and across
sector boundaries. A bit cannot be programmed
from a “0” back to a “1”. Attempting to do so may halt
the operation and set DQ5 to “1”, or cause the Data#
Polling algorithm to indicate the operation was suc-
cessful. However, a succeeding read will show that the
data is still “0”. Only erase operations can convert a “0”
to a “1”.
Unlock Bypass Command Sequence
The unlock bypass feature allows the system to
program bytes or words to the device faster than using
the standard program command sequence. The unlock
bypass command sequence is initiated by first writing
two unlock cycles. This is followed by a third write cycle
containing the unlock bypass command, 20h. The
device then enters the unlock bypass mode. A two-
cycle unlock bypass program command sequence is all
that is required to program in this mode. The first cycle
in this sequence contains the unlock bypass program
command, A0h; the second cycle contains the program
address and data. Additional data is programmed in
the same manner. This mode dispenses with the initial
two unlock cycles required in the standard program
command sequence, resulting in faster total program-
ming time. Table 5 shows the requirements for the
command sequence.
During the unlock bypass mode, only the Unlock
Bypass Program and Unlock Bypass Reset commands
are valid. To exit the unlock bypass mode, the system
mus t issu e t he two-cyc le u nlo ck byp as s re se t
command sequence. The first cycle must contain the
data 90h; the second cycle the data 00h. Addresses
are don’t cares. The device then returns to reading
array data.
Figure 3 illustrates the algorithm for the program oper-
ation. See the Erase/Program Operations table in “AC
Characteristics” for parameters, and to Figure 17 for
timing diagrams.
相關(guān)PDF資料
PDF描述
AM29SL800CT150FC 1M X 8 FLASH 1.8V PROM, 150 ns, PDSO48
AM42BDS640AGBC8IS Stacked Multi-Chip Package (MCP) Flash Memory and SRAM
AM42BDS640AGBC8IT Stacked Multi-Chip Package (MCP) Flash Memory and SRAM
AM42BDS640AGBC9IS Stacked Multi-Chip Package (MCP) Flash Memory and SRAM
AM42BDS640AG Stacked Multi-Chip Package (MCP) Flash Memory and SRAM
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AM29SL800DB120WCI 制造商:Spansion 功能描述:FLASH PARALLEL 1.8V 8MBIT 1MX8/512KX16 120NS 48FBGA - Trays
AM29SL800DB90WAD 制造商:Spansion 功能描述:
AM29X305ADC 制造商:Advanced Micro Devices 功能描述:Microprocessor, 8 Bit, 50 Pin, Ceramic, DIP
AM2A016 制造商:MAG-LITE 功能描述:Bulk
AM2A026 制造商:MAG-LITE 功能描述:Bulk