參數(shù)資料
型號: 20-668-0003
廠商: Rabbit Semiconductor
文件頁數(shù): 210/228頁
文件大小: 0K
描述: IC CPU RABBIT2000 30MHZ 100PQFP
標準包裝: 66
系列: Rabbit 2000
處理器類型: Rabbit 2000 8-位
速度: 30MHz
電壓: 2.7V,3V,3.3V,5V
安裝類型: 表面貼裝
封裝/外殼: 100-BQFP
供應商設備封裝: 100-PQFP(14x20)
包裝: 托盤
其它名稱: 20-668-0003-ND
316-1062
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁當前第210頁第211頁第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁第220頁第221頁第222頁第223頁第224頁第225頁第226頁第227頁第228頁
76
Rabbit 2000 Microprocessor User’s Manual
The doubled clock is created by xor’ing the delayed and inverted clock with itself. If the
original clock does not have a 50-50 duty cycle, then alternate clocks will have a slightly
different length. Since the duty cycle of the built-in oscillator can be as asymmetric as 52-
48, the clock generated by the clock doubler will exhibit up to a 4% variation in period on
alternate clocks. This does not affect the no-wait states memory access time since two
adjacent clocks are always used. However, the maximum allowed clock speed must be
reduced by 10% if the clock is supplied via the clock doubler. The only signals clocked on
the falling edge of the clock are the memory and I/O write pulses, and these have noncriti-
cal timing. Thus the length of the clock low time is noncritical as long as it is not so long
as to shorten the clock high time excessively, which could make the write pulse too short
for the memory used. This is unlikely to happen with practical clock speeds and typical
static RAM memories.
The power consumption is proportional to the clock frequency, and for this reason power
can be reduced by slowing the clock when less computing activity is taking place. The
clock doubler provides a convenient method of temporarily speeding up or slowing down
the clock as part of a power management scheme.
7.4 Controlling Power Consumption
The processor power consumption can be traded against speed by slowing the system
clock, adding wait states, using low-power-consumption instructions, and for maximum
power savings disabling the main system oscillator and using the real-time clock oscillator
to provide the clock. The following power saving features can be enabled.
Add memory wait states for instruction fetching. Total wait states are programmable as
0, 1, 2 or 4. Generally two wait states should use half the power of zero wait states.
If the clock doubler is not already in use, divide both the processor and the peripheral
clock by 4. This is permissible if nothing, particularly timers and serial ports, depends
on the peripheral clock.
If the clock doubler is in use, turn it off, dividing both processor and peripheral by 2.
Divide the processor and/or peripheral clock by 8.
Run code in RAM rather than flash memory.
Switch the processor and peripheral clock to the 32.768 kHz oscillator and, if desired,
disable the main oscillator.
Execute a low-power instruction loop consisting mostly of instructions that don’t use
much power. The best choice is successive mul instructions that multiply 0 x 0. No
intervening instructions are needed to load the terms to be multiplied after the first mul
since all registers involved stay at zero.
It is anticipated that these measures would reduce current consumption to as low as 25 A
plus some leakage that would be significant at high operating temperatures.
相關PDF資料
PDF描述
AMM36DRES CONN EDGECARD 72POS .156 EYELET
FMC65DREN-S734 CONN EDGECARD 130POS .100 EYELET
IDT7133LA20G IC SRAM 32KBIT 20NS 68PGA
FMC65DREH-S734 CONN EDGECARD 130POS .100 EYELET
EMC65DTEF CONN EDGECARD 130POS .100 EYELET
相關代理商/技術參數(shù)
參數(shù)描述
20-668-0011 功能描述:微處理器 - MPU Rabbit 3000A LQFP Microprocessor RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時鐘頻率:536 MHz 程序存儲器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-324
20-668-0016 功能描述:微處理器 - MPU Rabbit 3000 TFBGA Microprocessor RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時鐘頻率:536 MHz 程序存儲器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-324
2066-8001-90 制造商:TE CONNECTIVITY 功能描述:RF COAXIAL PANEL MOUNT CONNECTOR
20-668-0022 功能描述:微處理器 - MPU Rabbit 4000 LQFP Microprocessor RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時鐘頻率:536 MHz 程序存儲器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-324
20-668-0024 功能描述:微處理器 - MPU Rabbit 4000 LQFP Microprocessor RoHS:否 制造商:Atmel 處理器系列:SAMA5D31 核心:ARM Cortex A5 數(shù)據(jù)總線寬度:32 bit 最大時鐘頻率:536 MHz 程序存儲器大小:32 KB 數(shù)據(jù) RAM 大小:128 KB 接口類型:CAN, Ethernet, LIN, SPI,TWI, UART, USB 工作電源電壓:1.8 V to 3.3 V 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-324