參數(shù)資料
型號: ISL6532
廠商: Intersil Corporation
英文描述: ACPI Regulator/Controller for Dual Channel DDR Memory Systems
中文描述: ACPI的穩(wěn)壓器/雙通道DDR內存控制器系統(tǒng)
文件頁數(shù): 12/14頁
文件大?。?/td> 365K
代理商: ISL6532
12
High frequency decoupling capacitors should be placed as
close to the power pins of the load as physically possible. Be
careful not to add inductance in the circuit board wiring that
could cancel the usefulness of these low inductance
components. Consult with the manufacturer of the load on
specific decoupling requirements.
Use only specialized low-ESR capacitors intended for
switching-regulator applications for the bulk capacitors. The
bulk capacitor’s ESR will determine the output ripple voltage
and the initial voltage drop after a high slew-rate transient. An
aluminum electrolytic capacitor’s ESR value is related to the
case size with lower ESR available in larger case sizes.
However, the Equivalent Series Inductance (ESL) of these
capacitors increases with case size and can reduce the
usefulness of the capacitor to high slew-rate transient loading.
Unfortunately, ESL is not a specified parameter. Work with
your capacitor supplier and measure the capacitor’s
impedance with frequency to select a suitable component. In
most cases, multiple electrolytic capacitors of small case size
perform better than a single large case capacitor.
Output Capacitor Selection - LDO Regulator
The output capacitors used in LDO regulators are used to
provide dynamic load current. The amount of capacitance
and type of capacitor should be chosen with this criteria in
mind.
Output Inductor Selection
The output inductor is selected to meet the output voltage
ripple requirements and minimize the converter’s response
time to the load transient. The inductor value determines the
converter’s ripple current and the ripple voltage is a function
of the ripple current. The ripple voltage and current are
approximated by the following equations:
V
IN
- V
OUT
Fs x L
V
IN
Increasing the value of inductance reduces the ripple current
and voltage. However, the large inductance values reduce
the converter’s response time to a load transient.
One of the parameters limiting the converter’s response to a
load transient is the time required to change the inductor
current. Given a sufficiently fast control loop design, the
ISL6532 will provide either 0% or 100% duty cycle in
response to a load transient. The response time is the time
required to slew the inductor current from an initial current
value to the transient current level. During this interval the
difference between the inductor current and the transient
current level must be supplied by the output capacitor.
Minimizing the response time can minimize the output
capacitance required.
The response time to a transient is different for the
application of load and the removal of load. The following
equations give the approximate response time interval for
application and removal of a transient load:
L x I
TRAN
V
IN
- V
OUT
where: I
TRAN
is the transient load current step, t
RISE
is the
response time to the application of load, and t
FALL
is the
response time to the removal of load. The worst case
response time can be either at the application or removal of
load. Be sure to check both of these equations at the
minimum and maximum output levels for the worst case
response time.
Input Capacitor Selection - PWM Buck Converter
Use a mix of input bypass capacitors to control the voltage
overshoot across the MOSFETs. Use small ceramic
capacitors for high frequency decoupling and bulk capacitors
to supply the current needed each time the upper MOSFET
turns on. Place the small ceramic capacitors physically close
to the MOSFETs, between the drain of upper MOSFET and
the source of lower MOSFET.
The important parameters for the bulk input capacitance are
the voltage rating and the RMS current rating. For reliable
operation, select bulk capacitors with voltage and current
ratings above the maximum input voltage and largest RMS
current required by the circuit. Their voltage rating should be
at least 1.25 times greater than the maximum input voltage,
while a voltage rating of 1.5 times is a conservative
guideline. For worst cases, the RMS current rating
requirement for the input capacitor of a buck regulator is
approximately 1/2 the DC output load current.
The maximum RMS current required by the regulator may be
closely approximated through the following equation:
For a through hole design, several electrolytic capacitors
may be needed. For surface mount designs, solid tantalum
capacitors can be used, but caution must be exercised with
regard to the capacitor surge current rating. These
capacitors must be capable of handling the surge-current at
power-up. Some capacitor series available from reputable
manufacturers are surge current tested.
MOSFET Selection - PWM Buck Converter
The ISL6532 requires 2 N-Channel power MOSFETs for
switching power and a third MOSFET to block backfeed from
V
DDQ
to the Input in S3 Mode. These should be selected
based upon r
DS(ON)
, gate supply requirements, and thermal
management requirements.
In high-current applications, the MOSFET power dissipation,
package selection and heatsink are the dominant design
factors. The power dissipation includes two loss components;
conduction loss and switching loss. The conduction losses are
the largest component of power dissipation for both the upper
and the lower MOSFETs. These losses are distributed
between the two MOSFETs according to duty factor. The
switching losses seen when sourcing current will be different
I =
V
OUT
V
OUT
=
I x ESR
x
t
RISE
=
t
FALL
=
L x I
TRAN
V
OUT
I
RMSMAX
V
IN
-------------
I
OUTMAX
2
1
12
------
V
----------------------------
V
sw
V
IN
-------------
×
2
×
+
×
=
ISL6532
相關PDF資料
PDF描述
ISL6532CR ACPI Regulator/Controller for Dual Channel DDR Memory Systems
ISL6532CR-T PWM Control Circuit 16-PDIP 0 to 70
ISL6532CRZ PWM Control Circuit 16-PDIP 0 to 70
ISL6532CRZ-T PWM Control Circuit 16-SO 0 to 70
ISL6536AIBZ-T Four Channel Supervisory IC
相關代理商/技術參數(shù)
參數(shù)描述
ISL6532ACR 功能描述:IC REG/CTRLR ACPI DUAL DDR 28QFN RoHS:否 類別:集成電路 (IC) >> PMIC - 電源管理 - 專用 系列:- 應用說明:Ultrasound Imaging Systems Application Note 產品培訓模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標準包裝:37 系列:- 應用:醫(yī)療用超聲波成像,聲納 電流 - 電源:- 電源電壓:2.37 V ~ 6 V 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:56-WFQFN 裸露焊盤 供應商設備封裝:56-TQFN-EP(8x8) 包裝:管件
ISL6532ACR-T 功能描述:IC REG/CTRLR ACPI DUAL DDR 28QFN RoHS:否 類別:集成電路 (IC) >> PMIC - 電源管理 - 專用 系列:- 應用說明:Ultrasound Imaging Systems Application Note 產品培訓模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標準包裝:37 系列:- 應用:醫(yī)療用超聲波成像,聲納 電流 - 電源:- 電源電壓:2.37 V ~ 6 V 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:56-WFQFN 裸露焊盤 供應商設備封裝:56-TQFN-EP(8x8) 包裝:管件
ISL6532ACRZ 功能描述:DC/DC 開關控制器 3-IN-1 DDRG W/NO OC FOR SPRINGDALE MBS RoHS:否 制造商:Texas Instruments 輸入電壓:6 V to 100 V 開關頻率: 輸出電壓:1.215 V to 80 V 輸出電流:3.5 A 輸出端數(shù)量:1 最大工作溫度:+ 125 C 安裝風格: 封裝 / 箱體:CPAK
ISL6532ACRZ-T 功能描述:DC/DC 開關控制器 3-IN-1 DDRG W/NO OC SPRINGDALE MBS 28L RoHS:否 制造商:Texas Instruments 輸入電壓:6 V to 100 V 開關頻率: 輸出電壓:1.215 V to 80 V 輸出電流:3.5 A 輸出端數(shù)量:1 最大工作溫度:+ 125 C 安裝風格: 封裝 / 箱體:CPAK
ISL6532ACRZ-TK 功能描述:DC/DC 開關控制器 3-IN-1 DDRG W/NO OC SPRINGDALE MBS 28L RoHS:否 制造商:Texas Instruments 輸入電壓:6 V to 100 V 開關頻率: 輸出電壓:1.215 V to 80 V 輸出電流:3.5 A 輸出端數(shù)量:1 最大工作溫度:+ 125 C 安裝風格: 封裝 / 箱體:CPAK