參數(shù)資料
型號: EVAL-AD5934EBZ
廠商: Analog Devices Inc
文件頁數(shù): 6/32頁
文件大?。?/td> 0K
描述: BOARD EVALUATION FOR AD5934
標準包裝: 1
主要目的: 計時,直接數(shù)字合成(DDS)
嵌入式:
已用 IC / 零件: AD5934
主要屬性: 12 位數(shù)模轉(zhuǎn)換器,24 位調(diào)節(jié)字寬
次要屬性: 16MHz 2.7 V ~ 5.5 V 圖形用戶界面
已供物品: 板,線纜,軟件
產(chǎn)品目錄頁面: 797 (CN2011-ZH PDF)
相關(guān)產(chǎn)品: AD5934YRSZ-ND - IC NTWK ANALYZER 12B 1MSP 16SSOP
AD5934YRSZ-REEL7-ND - IC CONV 12BIT 250KSPS 16SSOP
AD5934
Data Sheet
Rev. C | Page 14 of 32
FREQUENCY SWEEP COMMAND SEQUENCE
The following sequence must be followed to implement a
frequency sweep:
1.
Enter standby mode. Prior to issuing a start frequency sweep
command, the device must be placed in standby mode by
issuing an enter standby mode command to the control
register (Register Address 0x80 and Register Address 0x81).
In this mode, the VOUT and VIN pins are connected internally
to ground so there is no dc bias across the external impedance or
between the impedance and ground.
2.
Enter initialize mode. In general, high Q complex circuits
require a long time to reach steady state. To facilitate the
measurement of such impedances, this mode allows the user
full control of the settling time requirement before entering
start frequency sweep mode where the impedance
measurement takes place.
An initialize with start frequency command to the control
register enters initialize mode. In this mode, the impedance
is excited with the programmed start frequency but no
measurement takes place. The user times out the required
settling time before issuing a start frequency sweep command to
the control register to enter the start frequency sweep mode.
3.
Enter start frequency sweep mode. The user enters this mode
by issuing a start frequency sweep command to the control
register. In this mode, the ADC starts measuring after the
programmed number of settling time cycles elapses. The user
can program an integer number of output frequency cycles
(settling time cycles) to Register Address 0x8A and Register
Address 0x8B before beginning the measurement at each
frequency point (see Figure 24).
The DDS output signal is passed through a programmable
gain stage to generate the four ranges of peak-to-peak output
excitation signals listed in Table 5. The peak-to-peak output
excitation voltage is selected by setting Bit D10 and Bit D9 in
the control register (see the Control Register section) and is
made available at the VOUT pin.
RECEIVE STAGE
The receive stage comprises a current-to-voltage amplifier,
followed by a programmable gain amplifier (PGA), antialiasing
filter, and ADC. The receive stage schematic is shown in Figure 17.
The unknown impedance is connected between the VOUT and
VIN pins. The first stage current-to-voltage amplifier configuration
means that a voltage present at the VIN pin is a virtual ground
with a dc value set at VDD/2. The signal current that is developed
across the unknown impedance flows into the VIN pin and
develops a voltage signal at the output of the current-to-voltage
converter. The gain of the current-to voltage amplifier is determined
by a user-selectable feedback resistor connected between Pin 4
(RFB) and Pin 5 (VIN). It is important for the user to choose a
feedback resistance value which, in conjunction with the selected
gain of the PGA stage, maintains the signal within the linear range
of the ADC (0 V to VDD).
05325-
038
5 × R
R
C
VIN
VDD/2
RFB
ADC
LPF
Figure 17. Receive Stage
The PGA allows the user to gain the output of the current-to-
voltage amplifier by a factor of 5 or 1 depending upon the status
of Bit D8 in the control register (see the Register Map section
Register Address 0x80). The signal is then low-pass filtered and
presented to the input of the 12-bit, 250 kSPS ADC.
The digital data from the ADC is passed directly to the DSP core
of the AD5934 that performs a DFT on the sampled data.
DFT OPERATION
A DFT is calculated for each frequency point in the sweep. The
AD5934 DFT algorithm is represented by
(
)
))
sin(
)
)(cos(
(
)
(
1023
0
n
j
n
x
f
X
n
=
=
where:
X(f) is the power in the signal at the Frequency Point f.
x(n) is the ADC output.
cos(n) and sin(n) are the sampled test vectors provided by the
DDS core at the Frequency f.
The multiplication is accumulated over 1024 samples for each
frequency point. The result is stored in two 16-bit registers
representing the real and imaginary components of the result. The
data is stored in twos complement format.
相關(guān)PDF資料
PDF描述
BQ2057CDGK IC LI-ION LDO CHRG MGMT 8-MSOP
VE-J7Y-EZ-F3 CONVERTER MOD DC/DC 3.3V 16.5W
VE-J7Y-EZ-F2 CONVERTER MOD DC/DC 3.3V 16.5W
MC34164P-3RPG IC SENSOR UNDERVOLT 3V TO-226AA
BQ2057TSN IC LITH-ION LDO CHRG MGMT 8-SOIC
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
EVAL-AD607EBZ 功能描述:BOARD EVALUATION FOR AD607 RoHS:是 類別:RF/IF 和 RFID >> RF 評估和開發(fā)套件,板 系列:- 標準包裝:1 系列:- 類型:GPS 接收器 頻率:1575MHz 適用于相關(guān)產(chǎn)品:- 已供物品:模塊 其它名稱:SER3796
EVAL-AD608EBZ 功能描述:BOARD EVALUATION FOR AD608 RoHS:是 類別:RF/IF 和 RFID >> RF 評估和開發(fā)套件,板 系列:- 標準包裝:1 系列:- 類型:GPS 接收器 頻率:1575MHz 適用于相關(guān)產(chǎn)品:- 已供物品:模塊 其它名稱:SER3796
EVAL-AD7021DBZ5 制造商:Analog Devices 功能描述:EVAL BOARD ((NS))
EVAL-AD7091RSDZ 功能描述:數(shù)據(jù)轉(zhuǎn)換 IC 開發(fā)工具 EVALUATION BOARD RoHS:否 制造商:Texas Instruments 產(chǎn)品:Demonstration Kits 類型:ADC 工具用于評估:ADS130E08 接口類型:SPI 工作電源電壓:- 6 V to + 6 V
EVAL-AD7091SDZ 功能描述:數(shù)據(jù)轉(zhuǎn)換 IC 開發(fā)工具 EVALUATION BOARD RoHS:否 制造商:Texas Instruments 產(chǎn)品:Demonstration Kits 類型:ADC 工具用于評估:ADS130E08 接口類型:SPI 工作電源電壓:- 6 V to + 6 V