2008-2012 Microchip Technology Inc.
DS70318F-page 93
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04
6.3
External Reset (EXTR)
The external Reset is generated by driving the MCLR
pin low. The MCLR pin is a Schmitt trigger input with an
additional glitch filter. Reset pulses that are longer than
the minimum pulse width will generate a Reset. Refer
minimum pulse width specifications. The external
Reset (MCLR) pin (EXTR) bit in the Reset Control
(RCON) register is set to indicate the MCLR Reset.
6.3.0.1
EXTERNAL SUPERVISORY
CIRCUIT
Many systems have external supervisory circuits that
generate Reset signals to reset multiple devices in the
system. This external Reset signal can be directly
connected to the MCLR pin to reset the device when
the rest of system is reset.
6.3.0.2
INTERNAL SUPERVISORY CIRCUIT
When using the internal power supervisory circuit to
reset the device, the external Reset pin (MCLR) should
be tied directly or resistively to VDD. In this case, the
MCLR pin will not be used to generate a Reset. The
external Reset pin (MCLR) does not have an internal
pull-up and must not be left unconnected.
6.4
Software RESET Instruction (SWR)
Whenever the RESET instruction is executed, the
device will assert SYSRST, placing the device in a
special Reset state. This Reset state will not
re-initialize the clock. The clock source in effect prior to
the RESET instruction will remain. SYSRST is released
at the next instruction cycle and the Reset vector fetch
will commence.
The Software Reset (SWR) flag (instruction) in the
Reset Control (RCON<6>) register is set to indicate
the software Reset.
6.5
Watchdog Time-out Reset (WDTO)
Whenever a Watchdog time-out occurs, the device will
asynchronously assert SYSRST. The clock source will
remain unchanged. A WDT time-out during Sleep or
Idle mode will wake-up the processor, but will not reset
the processor.
The Watchdog Timer Time-out (WDTO) flag in the
Reset Control (RCON<4>) register is set to indicate
the
Watchdog
Reset.
Refer
to
Watchdog Reset.
6.6
Trap Conflict Reset
If a lower priority hard trap occurs while a higher
priority trap is being processed, a hard Trap Conflict
Reset occurs. The hard traps include exceptions of pri-
ority level 13 through level 15, inclusive. The address
error (level 13) and oscillator error (level 14) traps fall
into this category.
The Trap Reset (TRAPR) flag in the Reset Control
(RCON<15>) register is set to indicate the Trap Conflict
more information on Trap Conflict Resets.
6.7
Configuration Mismatch Reset
To maintain the integrity of the Peripheral Pin Select
Control registers, they are constantly monitored with
shadow registers in hardware. If an unexpected
change in any of the registers occur (such as cell
disturbances caused by ESD or other external events),
a Configuration Mismatch Reset occurs.
The Configuration Mismatch (CM) flag in the Reset
Control (RCON<9>) register is set to indicate the
for
more
information
on
the
Configuration Mismatch Reset.
6.8
Illegal Condition Device Reset
An illegal condition device Reset occurs due to the
following sources:
Illegal Opcode Reset
Uninitialized W Register Reset
Security Reset
The Illegal Opcode or Uninitialized W Access Reset
(IOPUWR) flag in the Reset Control (RCON<14>)
register is set to indicate the illegal condition device
Reset.
6.8.1
ILLEGAL OPCODE RESET
A device Reset is generated if the device attempts to
execute an illegal opcode value that is fetched from
program memory.
The Illegal Opcode Reset function can prevent the
device from executing program memory sections that
are used to store constant data. To take advantage of
the Illegal Opcode Reset, use only the lower 16 bits of
each program memory section to store the data values.
The upper 8 bits should be programmed with 3Fh,
which is an illegal opcode value.
Note:
The
Configuration
Mismatch
Reset
feature and associated Reset flag are not
available on all devices.