參數(shù)資料
型號: AD9640ABCPZ-125
廠商: Analog Devices Inc
文件頁數(shù): 22/52頁
文件大?。?/td> 0K
描述: IC ADC 14BIT 125MSPS 64LFCSP
設計資源: Interfacing ADL5534 to AD9640 High Speed ADC (CN0049)
標準包裝: 1
位數(shù): 14
采樣率(每秒): 125M
數(shù)據(jù)接口: 串行,SPI?
轉(zhuǎn)換器數(shù)目: 2
功率耗散(最大): 846mW
電壓電源: 模擬和數(shù)字
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 64-VFQFN 裸露焊盤,CSP
供應商設備封裝: 64-LFCSP-VQ(9x9)
包裝: 托盤
輸入數(shù)目和類型: 4 個單端,單極;2 個差分,單極
AD9640
Rev. B | Page 29 of 52
CLK+ can be directly driven from a CMOS gate. Although the
CLK+ input circuit supply is AVDD (1.8 V), this input is designed
to withstand input voltages up to 3.6 V, making the selection of
the drive logic voltage very flexible.
OPTIONAL
100
0.1F
39k
50
1
150
RESISTOR IS OPTIONAL
CLK–
CLK+
ADC
AD9640
VCC
1k
1k
CLOCK
INPUT
06547
-038
AD951x
CMOS DRIVER
Figure 60. Single-Ended 1.8 V CMOS Sample Clock (Up to 150 MSPS)
150
RESISTOR IS OPTIONAL
OPTIONAL
100
0.1F
VCC
50
1
CLK–
CLK+
ADC
AD9640
1k
1k
CLOCK
INPUT
06
54
7-
0
39
AD951x
CMOS DRIVER
Figure 61. Single-Ended 3.3 V CMOS Sample Clock (Up to 150 MSPS)
Input Clock Divider
The AD9640 contains an input clock divider with the ability to
divide the input clock by integer values between 1 and 8. If a
divide ratio other than 1 is selected, the duty cycle stabilizer is
automatically enabled.
The AD9640 clock divider can be synchronized using the external
SYNC input. Bit 1 and Bit 2 of Register 0x100 allow the clock
divider to be resynchronized on every SYNC signal or only on
the first SYNC signal after the register is written. A valid SYNC
causes the clock divider to reset to its initial state. This synchro-
nization feature allows multiple parts to have their clock dividers
aligned to guarantee simultaneous input sampling.
Clock Duty Cycle
Typical high speed ADCs use both clock edges to generate
a variety of internal timing signals and, as a result, may be
sensitive to clock duty cycle. Commonly, a ±5% tolerance is
required on the clock duty cycle to maintain dynamic
performance characteristics.
The AD9640 contains a duty cycle stabilizer (DCS) that retimes
the nonsampling (falling) edge, providing an internal clock
signal with a nominal 50% duty cycle. This allows the user to
provide a wide range of clock input duty cycles without affecting
the performance of the AD9640. Noise and distortion performance
are nearly flat for a wide range of duty cycles with the DCS on,
as shown in Figure 43.
Jitter in the rising edge of the input is still of paramount concern
and is not easily reduced by the internal stabilization circuit.
The duty cycle control loop does not function for clock rates
less than 20 MHz nominally. The loop has a time constant
associated with it that needs to be considered where the clock
rate can change dynamically. This requires a wait time of 1.5 μs
to 5 μs after a dynamic clock frequency increase or decrease before
the DCS loop is relocked to the input signal. During the time
period the loop is not locked, the DCS loop is bypassed, and
internal device timing is dependent on the duty cycle of the input
clock signal. In such applications, it may be appropriate to disable
the duty cycle stabilizer. In all other applications, enabling the DCS
circuit is recommended to maximize ac performance.
Jitter Considerations
High speed, high resolution ADCs are sensitive to the quality
of the clock input. The degradation in SNR from the low
frequency SNR (SNRLF) at a given input frequency (fINPUT) due
to jitter (tJRMS) can be calculated by
SNRHF = 10 log[(2π × fINPUT × tJRMS)2 + 10
]
)
10
/
(
LF
SNR
In the equation, the rms aperture jitter represents the clock input
jitter specification. IF undersampling applications are particularly
sensitive to jitter, as illustrated in Figure 62.
75
70
65
60
55
50
45
40
1
10
100
1000
S
NR
(
d
Bc)
INPUT FREQUENCY (MHz)
06
54
7-
0
41
3.00ps
0.05ps
MEASURED
PERFORMANCE
0.20ps
0.5ps
1.0ps
1.50ps
2.00ps
2.50ps
Figure 62. SNR vs. Input Frequency and Jitter
The clock input should be treated as an analog signal in cases
where aperture jitter may affect the dynamic range of the AD9640.
Power supplies for clock drivers should be separated from the
ADC output driver supplies to avoid modulating the clock
signal with digital noise. Low jitter, crystal-controlled oscillators
make the best clock sources. If the clock is generated from
another type of source (by gating, dividing, or other methods),
it should be retimed by the original clock at the last step.
See the AN-501 Application Note and AN-756 Application
Note for more information about jitter performance as it
relates to ADCs.
相關PDF資料
PDF描述
AD9641BCPZ-80 IC ADC 14BIT SRL 80MSPS 32LFCSP
AD9644BCPZ-80 IC ADC 14BIT 80MSPS 3V 48LFCSP
AD9648BCPZRL7-125 IC ADC 14BIT 125MSPS 64LFCSP
AD9649BCPZRL7-80 IC ADC 14BIT 80MSPS 32LFCSP
AD9653BCPZRL7-125 IC ADC 16BIT 125MSPS SRL 48LFCSP
相關代理商/技術參數(shù)
參數(shù)描述
AD9640ABCPZ-150 功能描述:模數(shù)轉(zhuǎn)換器 - ADC 14Bit 150Msps Dual 1.8V PB Free ADC RoHS:否 制造商:Analog Devices 通道數(shù)量: 結(jié)構: 轉(zhuǎn)換速率: 分辨率: 輸入類型: 信噪比: 接口類型: 工作電源電壓: 最大工作溫度: 安裝風格: 封裝 / 箱體:
AD9640ABCPZ-80 功能描述:IC ADC 14BIT 80MSPS 64LFCSP RoHS:是 類別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 標準包裝:1 系列:- 位數(shù):14 采樣率(每秒):83k 數(shù)據(jù)接口:串行,并聯(lián) 轉(zhuǎn)換器數(shù)目:1 功率耗散(最大):95mW 電壓電源:雙 ± 工作溫度:0°C ~ 70°C 安裝類型:通孔 封裝/外殼:28-DIP(0.600",15.24mm) 供應商設備封裝:28-PDIP 包裝:管件 輸入數(shù)目和類型:1 個單端,雙極
AD9640ABCPZRL7-105 功能描述:模數(shù)轉(zhuǎn)換器 - ADC 14Bit 105Msps Dual 1.8V PB Free ADC RoHS:否 制造商:Analog Devices 通道數(shù)量: 結(jié)構: 轉(zhuǎn)換速率: 分辨率: 輸入類型: 信噪比: 接口類型: 工作電源電壓: 最大工作溫度: 安裝風格: 封裝 / 箱體:
AD9640ABCPZRL7-125 功能描述:14 Bit Analog to Digital Converter 2 Input 2 Pipelined 64-LFCSP-VQ (9x9) 制造商:analog devices inc. 系列:- 包裝:帶卷(TR) 零件狀態(tài):在售 位數(shù):14 采樣率(每秒):125M 輸入數(shù):2 輸入類型:差分,單端 數(shù)據(jù)接口:并聯(lián) 配置:S/H-ADC 無線電 - S/H:ADC:1:1 A/D 轉(zhuǎn)換器數(shù):2 架構:管線 參考類型:外部, 內(nèi)部 電壓 - 電源,模擬:1.7 V ~ 1.9 V 電壓 - 電源,數(shù)字:1.7 V ~ 1.9 V 特性:同步采樣 工作溫度:-40°C ~ 85°C 封裝/外殼:64-VFQFN 裸露焊盤,CSP 供應商器件封裝:64-LFCSP-VQ(9x9) 標準包裝:750
AD9640ABCPZRL7-80 制造商:AD 制造商全稱:Analog Devices 功能描述:14-Bit, 80/105/125/150 MSPS, 1.8 V Dual Analog-to-Digital Converter