參數(shù)資料
型號: ST10F276Z5Q3
廠商: STMICROELECTRONICS
元件分類: 微控制器/微處理器
英文描述: 16-BIT, MROM, 64 MHz, RISC MICROCONTROLLER, PQFP144
封裝: 28 X 28 MM, 3.40 MM HEIGHT, PLASTIC, QFP-144
文件頁數(shù): 105/239頁
文件大?。?/td> 2271K
代理商: ST10F276Z5Q3
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁當(dāng)前第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁第211頁第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁第220頁第221頁第222頁第223頁第224頁第225頁第226頁第227頁第228頁第229頁第230頁第231頁第232頁第233頁第234頁第235頁第236頁第237頁第238頁第239頁
ST10F276Z5
Electrical characteristics
In particular two different transient periods can be distinguished (see Figure 48):
1.
A first and quick charge transfer from the internal capacitances CP1 and CP2 to the
sampling capacitance CS occurs (CS is supposed initially completely discharged):
Considering a worst case (since the time constant in reality would be faster) in which
CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and
CS are in series and the time constant is:
This relation can again be simplified considering only CS as an additional worst
condition. In reality, the transient is faster, but the A/D converter circuitry has been
designed to also be robust in the very worst case: The sampling time TS is always
much longer than the internal time constant:
The charge of CP1 and CP2 is also redistributed on CS, determining a new value of the
voltage VA1 on the capacitance according to the following equation:
2.
A second charge transfer also involves CF (that is typically bigger than the on-chip
capacitance) through the resistance RL: Again considering the worst case in which CP2
and CS were in parallel to CP1 (since the time constant in reality would be faster), the
time constant is:
In this case, the time constant depends on the external circuit: In particular, imposing
that the transient is completed well before the end of sampling time TS, a constraint on
RL sizing is obtained:
Of course, RL must also be sized according to the current limitation constraints, in
combination with RS (source impedance) and RF (filter resistance). Being that CF is
definitely bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the
charge transfer transient) will be much higher than VA1. The following equation must be
respected (charge balance assuming now CS already charged at VA1):
The two transients above are not influenced by the voltage source that, due to the presence
of the RFCF filter, cannot provide the extra charge to compensate for the voltage drop on CS
with respect to the ideal source VA; the time constant RFCF of the filter is very high with
respect to the sampling time (TS). The filter is typically designed to act as anti-aliasing (see
Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of
the anti-aliasing filter, fF), according to Nyquist theorem the conversion rate fC must be at
least 2f0, meaning that the constant time of the filter is greater than or at least equal to twice
the conversion period (TC). Again the conversion period TC is longer than the sampling time
TS, which is just a portion of it, even when fixed channel continuous conversion mode is
τ1 RSW RAD
+
()
=
CP CS
CP CS
+
-----------------------
τ1 RSW RAD
+
() C
S
<
T
S
VA1 CS CP1 CP2
++
()
VA CP1 CP2
+
()
=
τ2 RL
<
CS CP1 CP2
++
()
0
τ2
10 R
L
=
CS CP1 CP2
++
()
TS
VA2 CS CP1 CP2 CF
+++
()
VA CF
VA1
+
CP1 CP2
+CS
+
()
=
相關(guān)PDF資料
PDF描述
ST10F296TR 16-BIT, FLASH, 64 MHz, MICROCONTROLLER, PBGA208
ST10R172LT6 16-BIT, 50 MHz, MICROCONTROLLER, PQFP100
ST10R272LT6 16-BIT, 50 MHz, MICROCONTROLLER, PQFP100
ST16C452PSIJ68 2 CHANNEL(S), SERIAL COMM CONTROLLER, PQCC68
ST16C452ATIJ68 2 CHANNEL(S), SERIAL COMM CONTROLLER, PQCC68
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
ST10F276Z5Q3TR 功能描述:16位微控制器 - MCU 16B MCU 832K Byte and 68K Byte RAM RoHS:否 制造商:Texas Instruments 核心:RISC 處理器系列:MSP430FR572x 數(shù)據(jù)總線寬度:16 bit 最大時鐘頻率:24 MHz 程序存儲器大小:8 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:2 V to 3.6 V 工作溫度范圍:- 40 C to + 85 C 封裝 / 箱體:VQFN-40 安裝風(fēng)格:SMD/SMT
ST10F276Z5T3 功能描述:16位微控制器 - MCU 16B MCU RoHS:否 制造商:Texas Instruments 核心:RISC 處理器系列:MSP430FR572x 數(shù)據(jù)總線寬度:16 bit 最大時鐘頻率:24 MHz 程序存儲器大小:8 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:2 V to 3.6 V 工作溫度范圍:- 40 C to + 85 C 封裝 / 箱體:VQFN-40 安裝風(fēng)格:SMD/SMT
ST10F280 功能描述:16位微控制器 - MCU 16-bit MCU MAC Unit 512 Kb Flash Memory RoHS:否 制造商:Texas Instruments 核心:RISC 處理器系列:MSP430FR572x 數(shù)據(jù)總線寬度:16 bit 最大時鐘頻率:24 MHz 程序存儲器大小:8 KB 數(shù)據(jù) RAM 大小:1 KB 片上 ADC:Yes 工作電源電壓:2 V to 3.6 V 工作溫度范圍:- 40 C to + 85 C 封裝 / 箱體:VQFN-40 安裝風(fēng)格:SMD/SMT
ST10F280_12 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:16-bit MCU with MAC unit, 512 Kbyte Flash memory and 18 Kbyte RAM
ST10F280_DATASHEET 制造商:STMICROELECTRONICS 制造商全稱:STMicroelectronics 功能描述:16-BIT MCU WITH MAC UNIT - 5V SINGLE SUPPLY - 18 KB RAM - 512 KB FLASH MEMORY - 2 TIMERS - A/D - ASC/SSC - 2 CAN2.0B - MARCH 2002