
PRODUCT SPECIFICATION
RC5039
11
P
6
5
VSEN
RT/OVP
FB
COMP
VID0
VID1
VID2
VID3
SS
PGOOD
BOOT
D/A
GND
MONITOR AND
PROTECTION
V
CC
14
C1-C4
4x 330
μ
F
L2
C5-C12
8x 1000
μ
F
0.1
μ
F
2x 1
μ
F
0.1
μ
F
0.1
μ
F
1000pF 90.9K
3.01K
UGATE
OCSET
PHASE
750k
CR1
Q1
1.1K
1000pF
R7
CR2
Q2
2N6394
VR1
5.1V
R2
R3
C16
R5
C15
C14
C19-C20
C21
C22
R8
20K
C24
IN4148
U1
1
μ
F
C18
R6
10
0.1
μ
F
F1
15A
V
SS
R9
10K
R10
1
10
13
12
11
16
9
7
8
15
2
3
4
VID0
VID1
VID2
VID3
PWRGD
V
OUT
V
SS
+12V
+5V
V
IN
=
L1
OSC
+
-
+
-
Component Selection Notes:
C5-C12 - 8 each 1000
μ
F 6.3W VDC, Sanyo MV-GX or Equivalent
C1-C4 - 4 each 330
μ
F 25W VDC, Sanyo MV-GX or Equivalent
L1 - Core: Micrometals T60-52; Each Winding: 14 Turns of 17AWG
L2 - Core: Micrometals T44-52; Winding: 7 Turns of 18AWG
CR1 - 1N4148 or Equivalent
CR2 - 25A, 35V Schottky, Motorola MBR2535CTL or Equivalent
Q1 - Fairchild NDP6030L, heatsink with thermal resistance
q
SA
<20
C/W should be used
15K
33pF
7
μ
H
C13
RC5039
1.5
μ
H
the selection process is an iterative procedure. The maxi-
mum junction temperature of the rectifier must remain below
the manufacturer’s specified value, typically 125
°
C. By using
the package thermal resistance specification and the Schottky
power dissipation equation (shown above), the junction tem-
perature of the rectifier can be estimated. Be sure to use the
available airflow and ambient temperature to determine the
junction temperature rise.
RC5039 DC-DC Converter
Application Circuit
The figure below shows an application circuit of a DC-DC
Converter for an Intel Pentium Pro microprocessor.
Figure 10. Pentium Pro DC-DC Converter