參數(shù)資料
型號(hào): ISL6443
廠商: Intersil Corporation
英文描述: 300kHz Dual, 180° Out-of-Phase, Step-Down PWM and Single Linear Controller(兩路300kHz,180°異相,降壓PWM外加一路線性控制器)
中文描述: 300kHz的雙路,180 °異相,降壓型PWM和線性控制器單(兩路為300kHz,180 °異相,降壓的PWM外加一路線性控制器)
文件頁數(shù): 15/18頁
文件大小: 341K
代理商: ISL6443
15
FN9044.2
August 9, 2006
EMI onto the base drive causes fluctuations in the base
current, which appear as noise on the linear regulator’s
output. Keep the base drive traces away from the step-down
converter, and as short as possible, to minimize noise
coupling. A resistor in series with the gate drivers reduces
the switching noise generated by PWM. Additionally, a
bypass capacitor may be placed across the base-to-emitter
resistor. This bypass capacitor, in addition to the transistor’s
input capacitor, could bring in second pole that will de-
stabilize the linear regulator. Therefore, the stability
requirements determine the maximum base-to-emitter
capacitance.
Layout Guidelines
Careful attention to layout requirements is necessary for
successful implementation of a ISL6443 based DC/DC
converter. The ISL6443 switches at a very high frequency
and therefore the switching times are very short. At these
switching frequencies, even the shortest trace has
significant impedance. Also the peak gate drive current rises
significantly in extremely short time. Transition speed of the
current from one device to another causes voltage spikes
across the interconnecting impedances and parasitic circuit
elements. These voltage spikes can degrade efficiency,
generate EMI, increase device overvoltage stress and
ringing. Careful component selection and proper PC board
layout minimizes the magnitude of these voltage spikes.
There are two sets of critical components in a DC/DC
converter using the ISL6443. The switching power
components and the small signal components. The
switching power components are the most critical from a
layout point of view because they switch a large amount of
energy so they tend to generate a large amount of noise.
The critical small signal components are those connected to
sensitive nodes or those supplying critical bias currents. A
multi-layer printed circuit board is recommended.
Layout Considerations
1. The Input capacitors, Upper FET, Lower FET, Inductor
and Output capacitor should be placed first. Isolate these
power components on the topside of the board with their
ground terminals adjacent to one another. Place the input
high frequency decoupling ceramic capacitor very close
to the MOSFETs.
2. Use separate ground planes for power ground and small
signal ground. Connect the SGND and PGND together
close of the IC. Do not connect them together anywhere
else.
3. The loop formed by Input capacitor, the top FET and the
bottom FET must be kept as small as possible.
4. Insure the current paths from the input capacitor to the
MOSFET; to the output inductor and output capacitor are
as short as possible with maximum allowable trace
widths.
5. Place The PWM controller IC close to lower FET. The
LGATE connection should be short and wide. The IC can
be best placed over a quiet ground area. Avoid switching
ground loop current in this area.
6. Place VCC_5V bypass capacitor very close to VCC_5V
pin of the IC and connect its ground to the PGND plane.
7. Place the gate drive components BOOT diode and BOOT
capacitors together near controller IC
8. The output capacitors should be placed as close to the
load as possible. Use short wide copper regions to
connect output capacitors to load to avoid inductance and
resistances.
9. Use copper filled polygons or wide but short trace to
connect junction of upper FET. Lower FET and output
inductor. Also keep the PHASE node connection to the IC
short. Do not unnecessary oversize the copper islands for
PHASE node. Since the phase nodes are subjected to
very high dv/dt voltages, the stray capacitor formed
between these islands and the surrounding circuitry will
tend to couple switching noise.
10. Route all high speed switching nodes away from the
control circuitry.
11. Create separate small analog ground plane near the IC.
Connect SGND pin to this plane. All small signal
grounding paths including feedback resistors, current
limit setting resistors, SYNC/SDx pull down resistors
should be connected to this SGND plane.
12. Ensure the feedback connection to output capacitor is
short and direct.
Component Selection Guidelines
MOSFET Considerations
The logic level MOSFETs are chosen for optimum efficiency
given the potentially wide input voltage range and output
power requirements. Two N-Channel MOSFETs are used in
each of the synchronous-rectified buck converters for the
PWM1 and PWM2 outputs. These MOSFETs should be
selected based upon r
DS(ON)
, gate supply requirements,
and thermal management considerations.
The power dissipation includes two loss components;
conduction loss and switching loss. These losses are
distributed between the upper and lower MOSFETs
according to duty cycle (see the following equations). The
conduction losses are the main component of power
dissipation for the lower MOSFETs. Only the upper MOSFET
has significant switching losses, since the lower device turns
on and off into near zero voltage. The equations assume
linear voltage-current transitions and do not model power
loss due to the reverse-recovery of the lower MOSFET’s
body diode.
2
(
)
r
(
IN
P
UPPER
I
--------------------------------------------------------------
(
)
V
(
)
I
-----------------------------------------------------------
(
)
V
(
)
t
(
)
F
(
)
+
=
ISL6443
相關(guān)PDF資料
PDF描述
ISL6444 Dual PWM Controller with DDR Memory Option for Gateway Applications(帶DDR存儲(chǔ)器選項(xiàng)的網(wǎng)關(guān)專用雙PWM控制器)
ISL6445 1.4MHz Dual, 180 Degree Out-of-Phase, Step-Down PWM Controller
ISL6445IAZ 1.4MHz Dual, 180 Degree Out-of-Phase, Step-Down PWM Controller
ISL6445IAZ-TK 1.4MHz Dual, 180 Degree Out-of-Phase, Step-Down PWM Controller
ISL6455 Triple Output Regulator with Single Synchronous Buck and Dual LDO(帶單同步降壓和雙LDO的三路輸出調(diào)節(jié)器)
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
ISL6443AEVAL2Z 功能描述:EVALUATION BOARD FOR ISL6443A RoHS:是 類別:編程器,開發(fā)系統(tǒng) >> 評(píng)估板 - DC/DC 與 AC/DC(離線)SMPS 系列:- 產(chǎn)品培訓(xùn)模塊:Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:1 系列:True Shutdown™ 主要目的:DC/DC,步升 輸出及類型:1,非隔離 功率 - 輸出:- 輸出電壓:- 電流 - 輸出:1A 輸入電壓:2.5 V ~ 5.5 V 穩(wěn)壓器拓?fù)浣Y(jié)構(gòu):升壓 頻率 - 開關(guān):3MHz 板類型:完全填充 已供物品:板 已用 IC / 零件:MAX8969
ISL6443AIRZ 功能描述:IC CTRLR SGL/STEP DOWN PWM 28QFN RoHS:是 類別:集成電路 (IC) >> PMIC - 電源管理 - 專用 系列:- 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:50 系列:- 應(yīng)用:熱電冷卻器 電流 - 電源:- 電源電壓:3 V ~ 5.5 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:28-SOIC(0.173",4.40mm 寬)裸露焊盤 供應(yīng)商設(shè)備封裝:28-TSSOP 裸露焊盤 包裝:管件 產(chǎn)品目錄頁面:1410 (CN2011-ZH PDF)
ISL6443AIRZ-TK 功能描述:IC CTRLR SGL/STP DWN PWM 28-QFN RoHS:是 類別:集成電路 (IC) >> PMIC - 電源管理 - 專用 系列:- 應(yīng)用說明:Ultrasound Imaging Systems Application Note 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:37 系列:- 應(yīng)用:醫(yī)療用超聲波成像,聲納 電流 - 電源:- 電源電壓:2.37 V ~ 6 V 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:56-WFQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:56-TQFN-EP(8x8) 包裝:管件
ISL6443AIVZ 功能描述:IC CTRLR SGL/STP DWN PWM 28TSSOP RoHS:是 類別:集成電路 (IC) >> PMIC - 電源管理 - 專用 系列:- 應(yīng)用說明:Ultrasound Imaging Systems Application Note 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:37 系列:- 應(yīng)用:醫(yī)療用超聲波成像,聲納 電流 - 電源:- 電源電壓:2.37 V ~ 6 V 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:56-WFQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:56-TQFN-EP(8x8) 包裝:管件
ISL6443AIVZ-TK 功能描述:IC CTRLR SGL/STP DWN PWM 28TSSOP RoHS:是 類別:集成電路 (IC) >> PMIC - 電源管理 - 專用 系列:- 應(yīng)用說明:Ultrasound Imaging Systems Application Note 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:37 系列:- 應(yīng)用:醫(yī)療用超聲波成像,聲納 電流 - 電源:- 電源電壓:2.37 V ~ 6 V 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:56-WFQFN 裸露焊盤 供應(yīng)商設(shè)備封裝:56-TQFN-EP(8x8) 包裝:管件