Rev. 0.3 / Apr. 2005
27
1
HY5DU121622CTP
tDQSQmax, the pulse width distortion of on-chip clock circuits, data pin to pin skew and output pattern effects and p-channel to
n-channel variation of the output drivers.
11. This derating table is used to increase tDS/tDH in case where the input slew-rate is below 0.5V/ns.
Input Setup / Hold Slew-rate Derating Table.
12. I/O Setup/Hold Plateau Derating. This derating table is used to increase tDS/tDH in case where the input level is flat below VREF
+/-310mV for a duration of up to 2ns.
13. I/O Setup/Hold Delta Inverse Slew Rate Derating. This derating table is used to increase tDS/tDH in case where the DQ and
DQS slew rates differ. The Delta Inverse Slew Rate is calculated as (1/SlewRate1)-(1/SlewRate2). For example, if slew rate 1 =
0.5V/ns and Slew Rate2 = 0.4V/n then the Delta Inverse Slew Rate = -0.5ns/V.
14.
DQS, DM and DQ input slew rate is specified to prevent double clocking of data and preserve setup and hold times. Signal tran-
sitions through the DC region must be monotonic.
15. tDAL = 2 clocks + (tRP / tCK ). For each of the terms above, if not already an integer, round to the next highest integer.
tCK is equal to the actual system clock cycle time.
Example: 200MHz at CL=3 and tCK = 5 ns,
tDAL = (15 ns / 5ns) + (15 ns / 5 ns) = (3.0) + (3.0)
Round up each non-integer to the next highest integer: = (3) + (4), tDAL = 6 clocks
16.
For the parts which do not has internal RAS lockout circuit, Active to Read with Auto precharge delay should be tRAS - BL/2 x
tCK.
Input Setup / Hold Slew-rate
Delta tDS
Delta tDH
V/ns
ps
ps
0.5
0
0
0.4
+75
+75
0.3
+150
+150
I/O Input Level
Delta tDS
Delta tDH
mV
ps
ps
+280
+50
+50
(1/SlewRate1)-(1/SlewRate2)
Delta tDS
Delta tDH
ns/V
ps
ps
0
0
0
+/-0.25
+50
+50
+/- 0.5
+100
+100