參數(shù)資料
型號: HC5549
廠商: Intersil Corporation
英文描述: Low Power SLIC with Battery Switch(用戶線接口電路)
中文描述: 低功耗用戶接口與電池開關(guān)(用戶線接口電路)
文件頁數(shù): 7/13頁
文件大?。?/td> 125K
代理商: HC5549
4-7
low battery. A switch and 600
resistor connect the MTU
reference to the Ring terminal. When the high battery
voltage exceeds the MTU reference of -49V (typically), the
Ring terminal will be clamped by the internal reference. The
same Ring relationships apply when operating from the low
battery voltage. For high battery voltages (VBH) less than or
equal to the internal MTU reference threshold:
Loop Current
During LPS, the device will provide current to a load. The
current path is through resistors and switches, and will be
function of the off hook loop resistance (R
LOOP
). This
includes the off hook phone resistance and copper loop
resistance. The current available during LPS is determined
by Equation 13.
Internal current limiting of the standby switches will limit the
maximum current to 20mA.
Another loop current related parameter is longitudinal
current capability. The longitudinal current capability is
reduced to 10mA
RMS
per pin. The reduction in longitudinal
current capability is a result of turning off the Tip and Ring
amplifiers.
On Hook Power Dissipation
The on hook power dissipation of the device during LPS is
determined by the operating voltages and quiescent currents
and is calculated using Equation 14.
The quiescent current terms are specified in the electrical
tables for each operating mode. Load power dissipation is
not a factor since this is an on hook mode. Some
applications may specify a standby current. The standby
current may be a charging current required for modern
telephone electronics.
Standby Current Power dissipation
Any standby line current, I
SLC
, introduces an additional
power dissipation term P
SLC
. Equation 15 illustrates the
power contribution is zero when the standby line current is
zero.
If the battery voltage is less than -49V (the MTU clamp is
off), the standby line current power contribution reduces to
Equation 16.
Most applications do not specify charging current
requirements during standby. When specified, the typical
charging current may be as high as 5mA
.
Forward Active
Overview
The forward active mode (FA, 001) is the primary AC
transmission mode of the device. On hook transmission, DC
loop feed and voice transmission are supported during forward
active. Loop supervision is provided by either the switch hook
detector (E0 = 1) or the ground key detector (E0 = 0). The
device may be operated from either high or low battery for on-
hook transmission and low battery for loop feed.
On-Hook Transmission
The primary purpose of on hook transmission will be to
support caller ID and other advanced signalling features.
The transmission over load level while on hook is 3.5V
PEAK
.
When operating from the high battery, the DC voltages at Tip
and Ring are MTU compliant. The typical Tip voltage is -4V
and the Ring voltage is a function of the battery voltage for
battery voltages less than -60V as shown in Equation 17.
Loop supervision is provided by the switch hook detector at
the DET output. When DET goes low, the low battery should
be selected for DC loop feed and voice transmission.
Feed Architecture
The design implements a voltage feed current sense
architecture. The device controls the voltage across Tip and
Ring based on the sensing of load current. Resistors are
placed in series with Tip and Ring outputs to provide the
current sensing. The diagram below illustrates the concept.
R
B
By monitoring the current at the amplifier output, a negative
feedback mechanism sets the output voltage for a defined
load. The amplifier gains are set by resistor ratios (R
A
, R
B
,
R
C
) providing all the performance benefits of matched
resistors. The internal sense resistor, R
CS
, is much smaller
than the gain resistors and is typically 20
for this device.
The feedback mechanism, K
S
, represents the amplifier
configuration providing the negative feedback.
V
RING
V
BH
4
+
=
(EQ. 12)
I
LOOP
1
49
(
)
(
)
600
600
R
LOOP
+
+
(
)
=
(EQ. 13)
P
LPS
V
BH
I
BHQ
×
V
BL
I
BLQ
×
V
CC
I
CCQ
×
+
+
=
(EQ. 14)
P
SLC
I
SLC
V
BH
49
1
I
SLC
x1200
+
+
(
)
×
=
(EQ. 15)
P
SLC
I
SLC
V
BH
1
I
SLC
x1200
+
+
(
)
×
=
(EQ. 16)
V
RING
V
BH
4
+
=
(EQ. 17)
FIGURE 3. VOLTAGE FEED CURRENT SENSE DIAGRAM
+
-
+
-
V
IN
V
OUT
R
C
R
CS
R
L
R
A
K
S
HC5549
相關(guān)PDF資料
PDF描述
HC573 Octal 3-State Noninverting Transparent Latch(High-Performance Silicon-Gate CMOS)
HC595 8-Bit Serial-Input/Serial or Parallel-Output Shift Register with Latched 3-State Outputs
HC652 EPROM IC; Memory Size:128Kbit; Memory Configuration:16K x 8; Access Time, Tacc:250ns; Package/Case:28-DIP; EPROM Type:Parallel UV Erasable; Supply Voltage Nom, Vcc:5V; Mounting Type:Through Hole; Voltage Rating:5V
HC74 T-NPN-SI PWR AMP
HCA10008 Darlington Bipolar Transistor; Package/Case:TO-3; Mounting Type:Through Hole; Current Rating:50A; Voltage Rating:120V
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
HC5549_04 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:Low Power SLIC with Battery Switch
HC5549CM 制造商:Rochester Electronics LLC 功能描述:
HC5549CMZ 制造商:Intersil Corporation 功能描述:SLIC 1CH 59DB 45MA 5V 28PLCC - Rail/Tube
HC5549IM 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:Low Power SLIC with Battery Switch
HC5552 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Telecommunication IC