參數(shù)資料
型號(hào): DSP1620
英文描述: TVS 400W 6.0V BIDIRECT SMA
中文描述: 澄清,串行I /設(shè)備的DSP1620/27/28/29 O控制注冊(cè)說(shuō)明
文件頁(yè)數(shù): 15/114頁(yè)
文件大?。?/td> 804K
代理商: DSP1620
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)當(dāng)前第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)
Preliminary Data Sheet
February 1997
DSP1628 Digital Signal Processor
Lucent Technologies Inc.
13
4 Hardware Architecture
(continued)
Data Arithmetic Unit (DAU)
The data arithmetic unit (DAU) contains a 16 x 16-bit
parallel multiplier that generates a full 32-bit product in
one instruction cycle. The product can be accumulated
with one of two 36-bit accumulators. The accumulator
data can be directly loaded from, or stored to, memory
in two 16-bit words with optional saturation on overflow.
The arithmetic logic unit (ALU) supports a full set of
arithmetic and logical operations on either 16- or 32-bit
data. A standard set of flags can be tested for condition-
al ALU operations, branches, and subroutine calls. This
procedure allows the processor to perform as a power-
ful 16- or 32-bit microprocessor for logical and control
applications. The available instruction set is compatible
with the DSP1618 instruction set. See Section 5.1 for
more information on the instruction set.
The user also has access to two additional DAU regis-
ters. The
psw
register contains status information from
the DAU (see Table 30, Processor Status Word Regis-
ter). The arithmetic control register,
auc
, is used to con-
figure some of the features of the DAU (see Table 31)
including single-cycle squaring. The
auc
register align-
ment field supports an arithmetic shift left by one and
left or right by two. The
auc
register is cleared by reset.
The counters
c0
to
c2
are signed, 8 bits wide, and may
be used to count events such as the number of times
the program has executed a sequence of code. They
are controlled by the conditional instructions and pro-
vide a convenient method of program looping.
Y Space Address Arithmetic Unit (YAAU)
The YAAU supports high-speed, register-indirect, com-
pound, and direct addressing of data (Y) memory. Four
general-purpose, 16-bit registers,
r0
to
r3
, are available
in the YAAU. These registers can be used to supply the
read or write addresses for Y space data. The YAAU
also decodes the 16-bit data memory address and out-
puts individual memory enables for the data access.
The YAAU can address the six 1 Kword banks of on-
chip DPRAM or three external data memory segments.
Up to 48 Kwords of off-chip RAM are addressable, with
16K addresses reserved for internal RAM.
Two 16-bit registers,
rb
and
re
, allow zero-overhead
modulo addressing of data for efficient filter implemen-
tations. Two 16-bit signed registers,
j
and
k
, are used to
hold user-defined postmodification increments. Fixed
increments of +1, –1, and +2 are also available. Four
compound-addressing modes are provided to make
read/write operations more efficient.
The YAAU allows direct (or indexed) addressing of data
memory. In direct addressing, the 16-bit base register
(
ybase
) supplies the 11 most significant bits of the ad-
dress. The direct data instruction supplies the remaining
5 bits to form an address to Y memory space and also
specifies one of 16 registers for the source or destina-
tion.
X Space Address Arithmetic Unit (XAAU)
The XAAU supports high-speed, register-indirect, in-
struction/coefficient memory addressing with postmodi-
fication of the register. The 16-bit
pt
register is used for
addressing coefficients. The signed register
i
holds a
user-defined postincrement. A fixed postincrement of
+1 is also available. Register PC is the program
counter. Registers
pr
and
pi
hold the return address for
subroutine calls and interrupts, respectively.
The XAAU decodes the 16-bit instruction/coefficient ad-
dress and produces enable signals for the appropriate
X memory segment. The addressable X segments are
48 Kwords of internal ROM, up to 16 Kwords of DPRAM
for the DSP1628x16 or up to 8 Kwords of DPRAM for
the DSP1628x08, and external ROM.
The locations of these memory segments depend upon
the memory map selected (see Table 5). A security
mode can be selected by mask option. This prevents
unauthorized access to the contents of on-chip ROM
(see Section 7, Mask-Programmable Options).
4.3 Interrupts and Trap
The DSP1628 supports prioritized, vectored interrupts
and a trap. The device has eight internal hardware
sources of program interrupt and two external interrupt
pins. Additionally, there is a trap pin and a trap signal
from the hardware development system (HDS). A soft-
ware interrupt is available through the
icall
instruction.
The
icall
instruction is reserved for use by the HDS.
Each of these sources of interrupt and trap has a unique
vector address and priority assigned to it. DSP16A in-
terrupt compatibility is not maintained.
The software interrupt and the traps are always enabled
and do not have a corresponding bit in the
ins
register.
Other vectored interrupts are enabled in the
inc
register
(see Table 33, Interrupt Control (
inc
) Register) and
monitored in the
ins
register (see Table 34, Interrupt
Status (
ins
) Register). When the DSP1628 goes into an
interrupt or trap service routine, the IACK pin is assert-
ed. In addition, pins VEC[3:0] encode which interrupt/
trap is being serviced. Table 4 details the encoding
used for VEC[3:0].
相關(guān)PDF資料
PDF描述
DSP1628 TVS 400W 60V BIDIRECT SMA
DSP16210 TVS 400W 6.5V UNIDIRECT SMA
DSP1627 TVS 400W 6.5V BIDIRECT SMA
DSP1629 TVS 400W 64V UNIDIRECT SMA
DSP16410C TVS 400W 7.0V UNIDIRECT SMA
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
DSP16210 制造商:AGERE 制造商全稱(chēng):AGERE 功能描述:DSP16210 Digital Signal Processor
DSP1627 制造商:AGERE 制造商全稱(chēng):AGERE 功能描述:DSP1627 Digital Signal Processor
DSP1627F32K10IR 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:DSP|16-BIT|CMOS|QFP|100PIN|PLASTIC
DSP1627F32K10IT 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:DSP|16-BIT|CMOS|QFP|100PIN|PLASTIC
DSP1627F32K11I 制造商:未知廠家 制造商全稱(chēng):未知廠家 功能描述:16-Bit Digital Signal Processor