參數(shù)資料
型號: AD5934YRSZ-REEL7
廠商: Analog Devices Inc
文件頁數(shù): 20/32頁
文件大小: 0K
描述: IC CONV 12BIT 250KSPS 16SSOP
產(chǎn)品培訓模塊: Direct Digital Synthesis Tutorial Series (1 of 7): Introduction
Direct Digital Synthesizer Tutorial Series (7 of 7): DDS in Action
Direct Digital Synthesis Tutorial Series (3 of 7): Angle to Amplitude Converter
Direct Digital Synthesis Tutorial Series (6 of 7): SINC Envelope Correction
Direct Digital Synthesis Tutorial Series (4 of 7): Digital-to-Analog Converter
Direct Digital Synthesis Tutorial Series (2 of 7): The Accumulator
標準包裝: 500
分辨率(位): 12 b
主 fclk: 16.776MHz
電源電壓: 2.7 V ~ 5.5 V
工作溫度: -40°C ~ 125°C
安裝類型: 表面貼裝
封裝/外殼: 16-SSOP(0.209",5.30mm 寬)
供應商設備封裝: 16-SSOP
包裝: 帶卷 (TR)
配用: EVAL-AD5934EBZ-ND - BOARD EVALUATION FOR AD5934
Data Sheet
AD5934
Rev. C | Page 27 of 32
TYPICAL APPLICATIONS
MEASURING SMALL IMPEDANCES
The AD5934 is capable of measuring impedance values up to
10 MΩ if the system gain settings are chosen correctly for the
impedance subrange of interest.
If the user places a small impedance value (≤500 Ω over the
sweep frequency of interest) between the VOUT and VIN pins,
it results in an increase in signal current flowing through the
impedance for a fixed excitation voltage in accordance with
Ohm’s law. The output stage of the transmit side amplifier
available at the VOUT pin may not be able to provide the
required increase in current through the impedance. To have a
unity gain condition about the receive side I-V amplifier, the
user needs to have a similar small value of feedback resistance
for system calibration as outlined in the Gain Factor Setup
Configuration section. The voltage presented at the VIN pin is
hard biased at VDD/2 due to the virtual earth on the receive
side I-V amplifier. The increased current sink/source
requirement placed on the output of the receive side I-V
amplifier may also cause the amplifier to operate outside of the
linear region. This causes significant errors in subsequent
impedance measurements.
The value of the output series resistance, ROUT, (see Figure 31)
at the VOUT pin must be taken into account when measuring
small impedances (ZUNKNOWN), specifically when the value of
the output series resistance is comparable to the value of the
impedance under test (ZUNKNOWN). If the ROUT value is unac-
counted for in the system calibration (that is, the gain factor
calculation) when measuring small impedances, there is an
introduced error into any subsequent impedance measurement
that takes place. The introduced error depends on the relative
magnitude of the impedance being tested compared to the value
of the output series resistance.
05324-
148
PGA
I-V
VDD/2
RFB
VIN
AD8531
AD820
AD8641
AD8627
VDD
20k
1F
VDD/2
VOUT
ROUT
RFB
DDS
2V p-p
R1
R2
ZUNKNOWN
TRANSMIT SIDE
OUTPUT AMPLIFIER
Figure 31. Additional External Amplifier Circuit for
Measuring Small Impedances
The value of the output series resistance depends upon the
selected output excitation range at VOUT and has a tolerance
from device to device like all discrete resistors manufactured in
a silicon fabrication process. Typical values of the output series
resistance are outlined in Table 16.
Table 16. Output Series Resistance (ROUT) vs. Excitation Range
Parameter
Value (Typ)
Output Series Resistance Value
Range 1
2 V p-p
200 typical
Range 2
1 V p-p
2.4 k typical
Range 3
0.4 V p-p
1.0 k typical
Range 4
0.2 V p-p
600 typical
Therefore, to accurately calibrate the AD5934 to measure small
impedances, it is necessary to reduce the signal current by
attenuating the excitation voltage sufficiently and also account
for the ROUT value and factor it into the gain factor calculation
Measuring the ROUT value during device characterization is
achieved by selecting the appropriate output excitation range at
VOUT and sinking and sourcing a known current at the pin
(for example, ±2 mA) and measuring the change in dc voltage.
The output series resistance can be calculated by measuring the
inverse of the slope (that is, 1/slope) of the resultant I-V plot.
A circuit that helps to minimize the effects of the issues
previously outlined is shown in Figure 31. The aim of this
circuit is to place the AD5934 system gain within its linear
range when measuring small impedances by using an additional
external amplifier circuit along the signal path. The external
amplifier attenuates the peak-to-peak excitation voltage at
VOUT by a suitable choice of resistors (R1 and R2), thereby
reducing the signal current flowing through the impedance and
minimizing the effect of the output series resistance in the
impedance calculations.
In the circuit shown in Figure 31, ZUNKNOWN recognizes the
output series resistance of the external amplifier which is
typically much less than 1 Ω with feedback applied depending
upon the op amp device used (for example, AD820, AD8641,
AD8531) as well as the load current, bandwidth, and gain.
The key point is that the output impedance of the external
amplifier in Figure 31 (which is also in series with ZUNKNOWN)
has a far less significant effect on gain factor calibration and
subsequent impedance readings in comparison to connecting
the small impedance directly to the VOUT pin (and directly in
series with ROUT). The external amplifier buffers the unknown
impedance from the effects of ROUT and introduces a smaller
output impedance in series with ZUNKNOWN.
相關PDF資料
PDF描述
VE-B1D-IX-B1 CONVERTER MOD DC/DC 85V 75W
AD9833BRMZ-REEL7 IC WAVEFORM GEN PROG 10MSOP
VE-B1D-IW-B1 CONVERTER MOD DC/DC 85V 100W
MCF51AC256BCFUE MCU 32BIT 256K FLASH 64-QFP
AD9833BRMZ-REEL IC WAVEFORM GEN PROG 10MSOP
相關代理商/技術參數(shù)
參數(shù)描述
AD594 制造商:AD 制造商全稱:Analog Devices 功能描述:Monolithic Thermocouple Amplifiers with Cold Junction Compensation
AD594A 制造商:AD 制造商全稱:Analog Devices 功能描述:Monolithic Thermocouple Amplifiers with Cold Junction Compensation
AD594AD 制造商:Analog Devices 功能描述:Temp Sensor Analog 14-Pin TO-116 制造商:Rochester Electronics LLC 功能描述:THERMOCOUPLER AMPLIFIER - Bulk 制造商:Analog Devices 功能描述:Special Function IC Package/Case:TO-116
AD594AD/+ 制造商:Rochester Electronics LLC 功能描述:- Bulk
AD594ADZ 功能描述:IC THERMOCOUPLE INSTR AMP 14CDIP RoHS:是 類別:集成電路 (IC) >> PMIC - 熱管理 系列:- 標準包裝:3,000 系列:- 功能:溫度開關 傳感器類型:內部 感應溫度:85°C 分界點 精確度:±6°C(最小值) 拓撲:ADC(三角積分型),比較器,寄存器庫 輸出類型:開路漏極 輸出警報:是 輸出風扇:是 電源電壓:2.7 V ~ 5.5 V 工作溫度:-55°C ~ 125°C 安裝類型:表面貼裝 封裝/外殼:SC-74A,SOT-753 供應商設備封裝:SOT-23-5 包裝:帶卷 (TR) 其它名稱:ADT6501SRJZP085RL7-ND