參數(shù)資料
型號: AD5933YRSZ-REEL7
廠商: Analog Devices Inc
文件頁數(shù): 9/40頁
文件大?。?/td> 0K
描述: NETWORK ANALYZER 12B 1MSP 16SSOP
產(chǎn)品培訓模塊: AD5933 Impedance to Digital Converter
Direct Digital Synthesis Tutorial Series (1 of 7): Introduction
Direct Digital Synthesizer Tutorial Series (7 of 7): DDS in Action
Direct Digital Synthesis Tutorial Series (3 of 7): Angle to Amplitude Converter
Direct Digital Synthesis Tutorial Series (6 of 7): SINC Envelope Correction
Direct Digital Synthesis Tutorial Series (4 of 7): Digital-to-Analog Converter
Direct Digital Synthesis Tutorial Series (2 of 7): The Accumulator
標準包裝: 500
分辨率(位): 12 b
主 fclk: 16.776MHz
電源電壓: 2.7 V ~ 5.5 V
工作溫度: -40°C ~ 125°C
安裝類型: 表面貼裝
封裝/外殼: 16-SSOP(0.209",5.30mm 寬)
供應商設備封裝: 16-SSOP
包裝: 帶卷 (TR)
配用: EVAL-AD5933EBZ-ND - BOARD EVALUATION FOR AD5933
Data Sheet
AD5933
Rev. E | Page 17 of 40
IMPEDANCE CALCULATION
MAGNITUDE CALCULATION
The first step in impedance calculation for each frequency point
is to calculate the magnitude of the DFT at that point.
The DFT magnitude is given by
2
I
R
Magnitude
+
=
where:
R is the real number stored at Register Address 0x94 and
Register Address 0x95.
I is the imaginary number stored at Register Address 0x96 and
Register Address 0x97.
For example, assume the results in the real data and imaginary
data registers are as follows at a frequency point:
Real data register = 0x038B = 907 decimal
Imaginary data register = 0x0204 = 516 decimal
506
.
1043
)
516
907
(
2
=
+
=
Magnitude
To convert this number into impedance, it must be multiplied
by
a scaling factor called the gain factor. The gain factor is
calculated during the calibration of the system with a known
impedance connected between the VOUT and VIN pins.
Once the gain factor has been calculated, it can be used in the
calculation of any unknown impedance between the VOUT and
VIN pins.
GAIN FACTOR CALCULATION
An example of a gain factor calculation follows, with the
following assumptions:
Output excitation voltage = 2 V p-p
Calibration impedance value, ZCALIBRATION = 200 k
PGA Gain = ×1
Current-to-voltage amplifier gain resistor = 200 k
Calibration frequency = 30 kHz
Then typical contents of the real data and imaginary data
registers after a frequency point conversion are:
Real data register = 0xF064 = 3996 decimal
Imaginary data register = 0x227E = +8830 decimal
106
.
9692
)
8830
(
)
3996
(
2
=
+
=
Magnitude
Impedance
Code
Admittance
Factor
Gain
=
=
1
12
-
10
×
515.819
106
.
9692
k
200
1
=
=
Factor
Gain
IMPEDANCE CALCULATION USING GAIN FACTOR
The next example illustrates how the calculated gain factor
derived previously is used to measure an unknown impedance.
For this example, assume that the unknown impedance = 510
k.
After measuring the unknown impedance at a frequency of
30 kHz, assume that the real data and imaginary data registers
contain the following data:
Real data register = 0xFA3F = 1473 decimal
Imaginary data register = 0x0DB3 = +3507 decimal
863
.
3802
)
3507
(
)
1473
((
2
=
+
=
Magnitude
Then the measured impedance at the frequency point is given
by
Impedance
Magnitude
Factor
Gain
×
=
1
=
×
=
k
791
.
509
863
.
3802
10
819273
.
515
1
12
GAIN FACTOR VARIATION WITH FREQUENCY
Because the AD5933 has a finite frequency response, the gain
factor also shows a variation with frequency. This variation in
gain factor results in an error in the impedance calculation over
a frequency range. Figure 22 shows an impedance profile based
on a single-point gain factor calculation. To minimize this error,
the frequency sweep should be limited to as small a frequency
range as possible.
101.5
98.5
54
66
FREQUENCY (kHz)
IMPED
A
N
C
E
(k
)
101.0
100.5
100.0
99.5
99.0
56
58
60
62
64
VDD = 3.3V
CALIBRATION FREQUENCY = 60kHz
TA = 25°C
MEASURED CALIBRATION IMPEDANCE = 100k
05324-
022
Figure 22. Impedance Profile Using a Single-Point Gain Factor Calculation
相關(guān)PDF資料
PDF描述
AD5934YRSZ IC NTWK ANALYZER 12B 1MSP 16SSOP
AD598JR IC LVDT SGNL COND OSC/REF 20SOIC
AD660BR IC DAC 16BIT MONO W/VREF 24-SOIC
AD6620ASZ IC DGTL RCVR DUAL 67MSPS 80-PQFP
AD6623ASZ IC TSP 4CHAN 104MSPS 128MQFP
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD5934 制造商:Analog Devices 功能描述:IMPEDANCE TO DIGITAL CONVERTERS - Bulk
AD5934YRSZ 功能描述:IC NTWK ANALYZER 12B 1MSP 16SSOP RoHS:是 類別:集成電路 (IC) >> 接口 - 直接數(shù)字合成 (DDS) 系列:- 產(chǎn)品變化通告:Product Discontinuance 27/Oct/2011 標準包裝:2,500 系列:- 分辨率(位):10 b 主 fclk:25MHz 調(diào)節(jié)字寬(位):32 b 電源電壓:2.97 V ~ 5.5 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:16-TSSOP(0.173",4.40mm 寬) 供應商設備封裝:16-TSSOP 包裝:帶卷 (TR)
AD5934YRSZ-REEL7 功能描述:IC CONV 12BIT 250KSPS 16SSOP RoHS:是 類別:集成電路 (IC) >> 接口 - 直接數(shù)字合成 (DDS) 系列:- 產(chǎn)品變化通告:Product Discontinuance 27/Oct/2011 標準包裝:2,500 系列:- 分辨率(位):10 b 主 fclk:25MHz 調(diào)節(jié)字寬(位):32 b 電源電壓:2.97 V ~ 5.5 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:16-TSSOP(0.173",4.40mm 寬) 供應商設備封裝:16-TSSOP 包裝:帶卷 (TR)
AD594 制造商:AD 制造商全稱:Analog Devices 功能描述:Monolithic Thermocouple Amplifiers with Cold Junction Compensation
AD594A 制造商:AD 制造商全稱:Analog Devices 功能描述:Monolithic Thermocouple Amplifiers with Cold Junction Compensation