
5
PRODUCT SPECIFICATION
RC4200
Voltage Multiplier/Divider
Figure 3. Voltage Multiplier/Divider
Extended Range
The input and output voltage ranges can be extended to
include 0 and negative voltage signals by adding bias
currents. The RSCS lter circuits are eliminated when the
input and biasing resistors are selected to limit the respective
currents to 50
mA min. and 250 mA max.
Extended Range Multiplier
Figure 4. Extended Range Multiplier
65-4200-04
RC4200
VZ
R1
–VS
I3
3
6
4
5
8
7
1
2
I2
I1
I4
VX
VY
R2
R4
RO
VO
VXVY
R1R2
=
VOVZ
ROR4
Solving for V
0
V
XVY
R
0R4
V
Z
R
1R2
--------------------------------------
=
For a multiplier circuit V
Z
V
R
cons
t
tan
==
Therefore: V
0
V
XVYK where K
R
0R4
V
RR1R2
---------------------
==
For a divider circuit V
Y
V
R
cons
t
tan
==
Therefore: V
0
V
X
V
Z
-------- K where K
V
RR0R4
R
1R2
---------------------
==
65-4200-05
RC4200
VX
(Input)
VY
(Input)
+VREF
RA
RB
RO
RC
–VS
+VS
RD
R1
R2
RC4
RCX
I3
VO
(Output)
3
6
4
5
8
7
1
2
I2
I1
I4
Resistors Ra and Rb extend the range of the VX and VY
inputs by picking values such that:
Resistor RC supplies bias current for I3 which allows the
output to go negative.
Resistors RCX and RCY permit equation (6) to balance, ie.:
Cross-Product Cancellation
Cross-products are a result of ths VXVR and VYVR terms.
To the extend that R1Rb = RCXRD, and R2Ra = RCYRd
cross-product cancellation will occur.
Arithmetic Offset Cancellation
The offset caused by the VREF
2 term will cancel to the
extent that RaRb = R0Rd, and the result is:
Resistor Values
Inputs:
I
1 min.
()
V
X min.
()
R
1
------------------------
V
REF
R
a
--------------
+
50
mA,
==
and I
1(max.)
V
X(max.)
R
1
------------------------
V
REF
R
a
--------------
+
250
mA,
==
also I
2(min.)
V
Y(min.)
R
2
-----------------------
V
REF
R
b
--------------
+
50
mA,
==
and I
2(max.)
V
Y(max.)
R
2
------------------------
V
REF
R
b
--------------
+
250
mA.
==
V
X
R
1
--------
V
REF
R
a
----------------
+
è
÷
VY
R
2
--------
V
REF
R
b
----------------
+
è
÷
V
0
R
0
-------
V
REF
R
C
----------------
V
X
R
CX
-------------
V
Y
R
CY
-------------
++
+
è
÷
VREF
R
D
----------------
è
÷
=
V
Y
V
X
R
1
R
2
------------------
V
X
V
REF
R
1
R
b
-------------------------
V
Y
V
REF
R
2
R
a
-------------------------
V
REF
R
a
R
b
---------------- =
+++
V
0
V
REF
R
0
R
d
------------------------
V
X
V
REF
R
cx
R
d
-------------------------
V
Y
V
REF
R
CY
R
d
-------------------------
V
REF
2
R
c
R
d
----------------
+++
V
YVX
R
1R2
----------------
V
0VREF
R
0Rd
--------------------- or V
0
V
XVYK
==
where K =
R
0Rd
V
REFR1R2
----------------------------
V
X min.
() V
X
V
X(max.)
DV
X
V
X(max.) –
=V
X(min.)
V
Y min.
() V
Y
V
Y(max.)
DV
Y
V
Y(max.) =
=V
Y(min.)
V
REF
Constant (+7V to +18V)
=
K
V
0
V
XVY
---------------- Design Requirements
()
=