參數(shù)資料
型號(hào): MQ80C32E-36SC
廠商: TEMIC SEMICONDUCTORS
元件分類: 微控制器/微處理器
英文描述: 8-BIT, 36 MHz, MICROCONTROLLER, CQFP44
文件頁(yè)數(shù): 37/198頁(yè)
文件大?。?/td> 4822K
代理商: MQ80C32E-36SC
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)當(dāng)前第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)第158頁(yè)第159頁(yè)第160頁(yè)第161頁(yè)第162頁(yè)第163頁(yè)第164頁(yè)第165頁(yè)第166頁(yè)第167頁(yè)第168頁(yè)第169頁(yè)第170頁(yè)第171頁(yè)第172頁(yè)第173頁(yè)第174頁(yè)第175頁(yè)第176頁(yè)第177頁(yè)第178頁(yè)第179頁(yè)第180頁(yè)第181頁(yè)第182頁(yè)第183頁(yè)第184頁(yè)第185頁(yè)第186頁(yè)第187頁(yè)第188頁(yè)第189頁(yè)第190頁(yè)第191頁(yè)第192頁(yè)第193頁(yè)第194頁(yè)第195頁(yè)第196頁(yè)第197頁(yè)第198頁(yè)
131
8111C–MCU Wireless–09/09
AT86RF231
When decrypting, due to the nature of AES algorithm, the initial key to be used is not the same
as the one used for encryption, but rather the last round key instead. This last round key is the
content of the key address space stored after running one full encryption cycle, and must be
saved for decryption. If the decryption key has not been saved, it has to be recomputed by first
running a dummy encryption (of an arbitrary plaintext) using the original encryption key, then
fetching the resulting round key from the key memory, and writing it back into the key memory as
the decryption key.
ECB decryption is not used by either IEEE 802.15.4 or ZigBee frame security. Both of these
standards do not directly encrypt the payload, but rather a nonce instead, and protect the pay-
load by applying an XOR operation between the resulting (AES-) cipher text and the original
payload. As the nonce is the same for encryption and decryption only ECB encryption is
required. Decryption is performed by XORing the received cipher text with its own encryption
result respectively, which results in the original plaintext payload upon success.
11.1.4.2
Cipher Block Chaining (CBC)
In CBC mode, the result of a previous AES operation is XORed with the new incoming vector,
forming the new plaintext to encrypt, see Figure 11-4 on page 131. This mode is used for the
computation of a cryptographic checksum (message integrity code, MIC).
Figure 11-4. CBC Mode - Encryption
After preparing the AES key, and defining the AES operation direction using SRAM register bit
AES_DIR, the data has to be provided to the AES engine and the CBC operation can be started.
The first CBC run has to be configured as ECB to process the initial data (plaintext XORed with
an initialization vector provided by the microcontroller). All succeeding AES runs are to be con-
figured as CBC by setting register bits AES_MODE = 0x2 (register 0x83, AES_CTRL). Register
bit AES_DIR (register 0x83, AES_CTRL) must be set to AES_DIR = 0 to enable AES encryption.
The data to be processed has to be transferred to the SRAM starting with address 0x84 to 0x93
(register AES_STA T E). Setting register bit AES_REQUEST = 1 (register 0x94,
starts the first encryption within one SRAM access. This causes the next 128 bits of plaintext
data to be XORed with the previous cipher text data, see Figure 11-4 on page 131.
According to IEEE 802.15.4 the input for the very first CBC operation has to be prepared by a
XORing a plaintext with an initialization vector (IV). The value of the initialization vector is 0.
However, for non-compliant usage any other initialization vector can be used. This operation has
to be prepared by the microcontroller.
Block Cipher
Encryption
Key
Ciphertext
Block Cipher
Encryption
Plaintext
Ciphertext
Plaintext
Initialization Vector (IV)
Encryption
Key
ECB
mode
CBC
mode
相關(guān)PDF資料
PDF描述
MR80C52XXX-20:R 8-BIT, MROM, 20 MHz, MICROCONTROLLER, CQCC44
MQ80C32E-30/883 8-BIT, 30 MHz, MICROCONTROLLER, CQFP44
MR80C52CXXX-16/883R 8-BIT, MROM, 16 MHz, MICROCONTROLLER, CQCC44
MR80C52TXXX-16SB 8-BIT, MROM, 16 MHz, MICROCONTROLLER, CQCC44
MD83C154TXXX-L16P883D 8-BIT, MROM, 16 MHz, MICROCONTROLLER, CDIP40
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MQ82370-20 制造商:Rochester Electronics LLC 功能描述:- Bulk
MQ8238020 制造商:Intel 功能描述:CONTROLLER: OTHER
MQ82380-20 制造商:Rochester Electronics LLC 功能描述:- Bulk
MQ82380-20/R 制造商:Rochester Electronics LLC 功能描述:
MQ82592 制造商:Rochester Electronics LLC 功能描述:- Bulk