參數資料
型號: MPC9448ACR2
廠商: IDT, Integrated Device Technology Inc
文件頁數: 11/13頁
文件大小: 0K
描述: IC CLOCK BUFFER MUX 1:12 32-LQFP
標準包裝: 2,000
類型: 扇出緩沖器(分配),多路復用器
電路數: 1
比率 - 輸入:輸出: 1:12
差分 - 輸入:輸出: 是/無
輸入: LVCMOS,LVPECL
輸出: LVCMOS
頻率 - 最大: 350MHz
電源電壓: 2.375 V ~ 3.465 V
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 32-LQFP
供應商設備封裝: 32-TQFP(7x7)
包裝: 帶卷 (TR)
MPC9448 REVISION 7 DECEMBER 21, 2012
7
2012 Integrated Device Technology, Inc.
MPC9448 Data Sheet
3.3V/2.5V LVCMOS 1:12 CLOCK FANOUT BUFFER
Since this step is well above the threshold region, it will not
cause any false clock triggering; however, designers may be
uncomfortable with unwanted reflections on the line. To better
match the impedances when driving multiple lines, the
situation in Figure 6 should be used. In this case, the series
terminating resistors are reduced such that when the parallel
combination is added to the output buffer impedance, the line
impedance is perfectly matched.
Figure 6. Optimized Dual Line Termination
Power Consumption of the MPC9448 and
Thermal Management
The MPC9448 AC specification is guaranteed for the
entire operating frequency range up to 350 MHz. The
MPC9448 power consumption, and the associated long-term
reliability, may decrease the maximum frequency limit,
depending on operating conditions such as clock frequency,
supply voltage, output loading, ambient temperature, vertical
convection and thermal conductivity of package and board.
This section describes the impact of these parameters on the
junction temperature and gives a guideline to estimate the
MPC9448 die junction temperature and the associated
device reliability. For a complete analysis of power
consumption as a function of operating conditions and
associated long term device reliability, please refer to the
Freescale application note AN1545. According the AN1545,
the long-term device reliability is a function of the die junction
temperature:
Increased power consumption will increase the die
junction temperature and impact the device reliability
(MTBF). According to the system-defined tolerable MTBF,
the die junction temperature of the MPC9448 needs to be
controlled, and the thermal impedance of the board/package
should be optimized. The power dissipated in the MPC9448
is represented in equation 1.
Where ICCQ is the static current consumption of the
MPC9448, CPD is the power dissipation capacitance per
output.
CL represents the external capacitive output
load, and N is the number of active outputs (N is always 12 in
case of the MPC9448). The MPC9448 supports driving
transmission lines to maintain high signal integrity and tight
timing parameters. Any transmission line will hide the lumped
capacitive load at the end of the board trace, therefore,
CL
is zero for controlled transmission line systems and can be
eliminated from equation 1. Using parallel termination output,
termination results in equation 2 for power dissipation.
In equation 2, P stands for the number of outputs with a
parallel or thevenin termination. VOL, IOL, VOH and IOH are a
function of the output termination technique, and DCQ is the
clock signal duty cycle. If transmission lines are used,
CL is
zero in equation 2 and can be eliminated. In general, the use
of controlled transmission line techniques eliminates the
impact of the lumped capacitive loads at the end lines and
greatly reduces the power dissipation of the device.
Equation 3 describes the die junction temperature TJ as a
function of the power consumption.
Where Rthja is the thermal impedance of the package
(junction to ambient), and TA is the ambient temperature.
According to Figure 9, the junction temperature can be used
to estimate the long-term device reliability. Further, combining
equation 1 and equation 2 results in a maximum operating
frequency for the MPC9448 in a series terminated
transmission line system, equation 4.
17
MPC9448
Output
Buffer
RS = 16
ZO = 50
RS = 16
ZO = 50
17
+ 16 || 16 = 50 || 50
25
= 25
Table 9. Die Junction Temperature and MTFB
Junction Temperature (
C)
MTBF (Years)
100
20.4
110
9.1
120
4.2
130
2.0
PTOT = [ ICCQ + VCC fCLOCK ( N CPD + CL ) ] VCC
M
PTOT = VCC [ ICCQ + VCC fCLOCK ( N CPD + CL ) ] + [ DCQ IOH (VCC – VOH) + (1 – DCQ) IOL VOL ]
M
P
TJ = TA + PTOT Rthja
Equation 1
Equation 2
Equation 3
Equation 4
fCLOCK,MAX =
CPD N V2CC
1
[
– (ICCQ VCC)
]
Rthja
Tj,MAX – TA
相關PDF資料
PDF描述
MPC9449AER2 IC CLK BUFF DVDR MUX 3:15 52LQFP
MPC94551EFR2 IC CLOCK BUFFER 1:4 160MHZ 8SOIC
MPC9456AC IC CLK BUFF DVDR MUX 1:10 32LQFP
MPC9600AE IC PLL CLK DRIVER LV 48-LQFP
MPC961CAC IC BUFFER ZD 1:18 PLL 32-LQFP
相關代理商/技術參數
參數描述
MPC9448D 制造商:MOTOROLA 制造商全稱:Motorola, Inc 功能描述:3.3V/2.5V LVCMOS 1:12 Clock Fanout Buffer
MPC9448FA 功能描述:時鐘緩沖器 2.5 3.3V 275MHz Clock Generator RoHS:否 制造商:Texas Instruments 輸出端數量:5 最大輸入頻率:40 MHz 傳播延遲(最大值): 電源電壓-最大:3.45 V 電源電壓-最小:2.375 V 最大功率耗散: 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 封裝 / 箱體:LLP-24 封裝:Reel
MPC9448FAR2 功能描述:IC CLOCK BUFFER MUX 2:12 32-LQFP RoHS:否 類別:集成電路 (IC) >> 時鐘/計時 - 時鐘緩沖器,驅動器 系列:- 標準包裝:1 系列:HiPerClockS™ 類型:扇出緩沖器(分配),多路復用器 電路數:1 比率 - 輸入:輸出:2:18 差分 - 輸入:輸出:是/無 輸入:CML,LVCMOS,LVPECL,LVTTL,SSTL 輸出:LVCMOS,LVTTL 頻率 - 最大:250MHz 電源電壓:2.375 V ~ 3.465 V 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:32-LQFP 供應商設備封裝:32-TQFP(7x7) 包裝:- 其它名稱:800-1923-6
MPC9449 制造商:MOTOROLA 制造商全稱:Motorola, Inc 功能描述:3.3V / 2.5 V 1:15 PECL/LVCMOS
MPC9449AC 功能描述:IC CLK BUFF DVDR MUX 3:15 52LQFP RoHS:是 類別:集成電路 (IC) >> 時鐘/計時 - 時鐘緩沖器,驅動器 系列:- 標準包裝:1 系列:HiPerClockS™ 類型:扇出緩沖器(分配),多路復用器 電路數:1 比率 - 輸入:輸出:2:18 差分 - 輸入:輸出:是/無 輸入:CML,LVCMOS,LVPECL,LVTTL,SSTL 輸出:LVCMOS,LVTTL 頻率 - 最大:250MHz 電源電壓:2.375 V ~ 3.465 V 工作溫度:0°C ~ 70°C 安裝類型:表面貼裝 封裝/外殼:32-LQFP 供應商設備封裝:32-TQFP(7x7) 包裝:- 其它名稱:800-1923-6