
707
11028E–ATARM–22-Apr-13
SAM9G46
Command: A command is a token that starts an operation. A command is sent from the host
either to a single card (addressed command) or to all connected cards (broadcast
command). A command is transferred serially on the CMD line.
Response: A response is a token which is sent from an addressed card or (synchronously)
from all connected cards to the host as an answer to a previously received command. A
response is transferred serially on the CMD line.
Data: Data can be transferred from the card to the host or vice versa. Data is transferred via
the data line.
Card addressing is implemented using a session address assigned during the initialization
phase by the bus controller to all currently connected cards. Their unique CID number identifies
individual cards.
The structure of commands, responses and data blocks is described in the High Speed MultiMe-
High Speed MultiMediaCard bus data transfers are composed of these tokens.
There are different types of operations. Addressed operations always contain a command and a
response token. In addition, some operations have a data token; the others transfer their infor-
mation directly within the command or response structure. In this case, no data token is present
in an operation. The bits on the DAT and the CMD lines are transferred synchronous to the clock
HSMCI Clock.
Two types of data transfer commands are defined:
Sequential commands: These commands initiate a continuous data stream. They are
terminated only when a stop command follows on the CMD line. This mode reduces the
command overhead to an absolute minimum.
Block-oriented commands: These commands send a data block succeeded by CRC bits.
Both read and write operations allow either single or multiple block transmission. A multiple
block transmission is terminated when a stop command follows on the CMD line similarly to the
sequential read or when a multiple block transmission has a pre-defined block count (
See “DataThe HSMCI provides a set of registers to perform the entire range of High Speed MultiMedia
Card operations.
36.8.1
Command - Response Operation
After reset, the HSMCI is disabled and becomes valid after setting the MCIEN bit in the
HSMCI_CR Control Register.
The PWSEN bit saves power by dividing the HSMCI clock by 2PWSDIV + 1 when the bus is
inactive.
The two bits, RDPROOF and WRPROOF in the HSMCI Mode Register (HSMCI_MR) allow
stopping the HSMCI Clock during read or write access if the internal FIFO is full. This will guar-
antee data integrity, not bandwidth.
All the timings for High Speed MultiMedia Card are defined in the High Speed MultiMediaCard
System Specification.
The two bus modes (open drain and push/pull) needed to process all the operations are defined
in the HSMCI command register. The HSMCI_CMDR allows a command to be carried out.