參數(shù)資料
型號(hào): MCZ33976EGR2
廠商: 飛思卡爾半導(dǎo)體(中國)有限公司
英文描述: Dual Gauge Driver with Configurable esponse Time
中文描述: 雙計(jì)驅(qū)動(dòng)器,可配置esponse時(shí)間
文件頁數(shù): 31/41頁
文件大小: 551K
代理商: MCZ33976EGR2
Analog Integrated Circuit Device Data
Freescale Semiconductor
31
33976
FUNCTIONAL DEVICE OPERATION
LOGIC COMMANDS AND REGISTERS
Some applications may require a guaranteed maximum
pointer velocity and acceleration. Guaranteeing these
maximums requires that the nominal internal clock frequency
falls below 1.0 MHz. The frequency range of the calibrated
clock will always be below 1.0 MHz if PECCR bit PE4 is
logic [0] prior to initiating a calibration command, followed by
an 8.0
μ
s reference pulse. The frequency will be centered at
1.0 MHz if bit D4 is logic [1].
The
33976 can be fooled into calibrating faster or slower
than the optimal frequency by sending a calibration pulse
longer or shorter than the intended 8.0
μ
s. As long as the
calibration divisor remains between 4 and 15 there will be no
clock calibration flag. For applications requiring a slower
calibrated clock — e.g., a motor designed with a gear ratio of
120:1 (8 microsteps/deg) — he user will have to provide a
longer calibration pulse. The device allows a SPI-selectable
slowing of the internal oscillator, using the PECCR command,
so that the calibration divisor safely falls within the 4-to-15
range when calibrating with a longer time reference. For
example, for the 120:1 motor, the pulse would be 12
μ
s
instead of 8.0
μ
s. The result of this slower calibration results
in the longer step times necessary to generate pointer
movements meeting acceleration and velocity requirements.
The resolution of the pointer positioning decreases from
0.083 deg/microstep (180:1) to 0.125 deg/microstep (120:1)
while the pointer sweep range increases from approximately
340 degrees to over 500 degrees.
Note
Be aware that a fast calibration could result in
violations of the motor acceleration and velocity maximums,
resulting in missed steps.
Pointer Deceleration
Constant acceleration and deceleration of the pointer
produces relatively choppy movements when compared to
those of an air core gauge. Modifying the velocity position
ramp during deceleration can create the desired damped
movement. This modification is accomplished by adding
repetitive steps at several of the last velocity position step
values as the pointer decelerates. The 33976 allows the user
to tailor the response characteristics to the application with
three independent ramp characteristic variables. The RS,
HCP and HC variables can be used to change the slowest
velocity position steps, the number of Hold Counts, and the
number of ramp positions to which the Hold Counts apply.
More information is available in the RMPSEL description and
in the example shown in
Figure 11
. If the maximum
acceleration and deceleration of the pointer is desired, the
Hold Counts can be disabled dynamically by either writing a
logic [1] to the global Hold Count Disable bit, PECCR bit PE5,
or to the HE0 or HE1 bits of the POS0R or POS1R,
respectively.
Figure 11. Deceleration Ramp
Return to Zero Calibration
Many step motor applications require that the IC detect
when the motor is stalled after commanded to return to the
zero position for calibration purposes. The stalling occurs
when the pointer hits the end stop on the gauge bezel, which
is usually at the
zero
position. It is important that when the
pointer reaches the end stop it immediately stops without
bouncing away.
The 33976 device provides the ability to automatically and
independently return each of the two pointers to the zero
position via the RTZR and RTZCR SPI commands. An
automatic RTZ is initiated using the RZ0, RZ1, and RZ2 bits
provided the RZ4 bit is a logic [0]. Unconditional RTZ
movement is initiated using the RZ0, RZ1, and RZ2 bits
provided the RZ4 bit is a logic [1]. During an RTZ event, all
commands related to the gauge being returned are ignored
until the pointer has successfully zeroed or the RTZR bit RZ1
is written to disable the event. Once an RTZ event is initiated,
the device reports back via the SO pin that an RTZ is
underway.
The RTZCR command is used to set the RTZ pointer
speed, choose an appropriate blanking time, and preload the
integration accumulator with an appropriate offset. On
reaching the end stop, the device reports back to the
First Velocity w/ Hold Counts = HCP
×
8 + RS = 8 + 0 = 8
24
23
22
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
1
2
3
4
5
6
7
8
9
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Position
= 0
POSITION
MICROSTEPS
HCP = 1
Initial Velocity Position = RS + 1 = 0 + 1 = 1
Last Velocity w/ Hold Counts = RS + 2 = 0 + 2 = 2
Hold Counts per Step = HC = 3
VELOCITY
Acceeae
Deceeae
For this example:
RS = 0
HC = 3
相關(guān)PDF資料
PDF描述
MCZ33970EGR2 Dual Gauge Driver Integrated Circuit with Improved Damping Algorithms
MCZ145017EGR2 Low-Power CMOS Ionization Smoke Detector IC with Temporal Pattern Horn Driver
MMA1220EG Low G Micromachined Accelerometer
MMA1220EGR2 Low G Micromachined Accelerometer
MMA2244EGR2 Low G Micromachined Accelerometer
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MCZ33977EG 功能描述:馬達(dá)/運(yùn)動(dòng)/點(diǎn)火控制器和驅(qū)動(dòng)器 SINGLE GAUGE DR. LG PTR RoHS:否 制造商:STMicroelectronics 產(chǎn)品:Stepper Motor Controllers / Drivers 類型:2 Phase Stepper Motor Driver 工作電源電壓:8 V to 45 V 電源電流:0.5 mA 工作溫度:- 25 C to + 125 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:HTSSOP-28 封裝:Tube
MCZ33977EG 制造商:Freescale Semiconductor 功能描述:IC STEPPER MOTOR GAUGE DRIVER SPI
MCZ33977EGR2 功能描述:馬達(dá)/運(yùn)動(dòng)/點(diǎn)火控制器和驅(qū)動(dòng)器 SINGLE GAUGE DR. LG. PTR RoHS:否 制造商:STMicroelectronics 產(chǎn)品:Stepper Motor Controllers / Drivers 類型:2 Phase Stepper Motor Driver 工作電源電壓:8 V to 45 V 電源電流:0.5 mA 工作溫度:- 25 C to + 125 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:HTSSOP-28 封裝:Tube
MCZ33989EG 功能描述:網(wǎng)絡(luò)控制器與處理器 IC SBC-HS RoHS:否 制造商:Micrel 產(chǎn)品:Controller Area Network (CAN) 收發(fā)器數(shù)量: 數(shù)據(jù)速率: 電源電流(最大值):595 mA 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:PBGA-400 封裝:Tray
MCZ33989EG 制造商:Freescale Semiconductor 功能描述:IC SYSTEM BASIS W/CAN TRANCEIVER