
Analog Integrated Circuit Device Data
Freescale Semiconductor
13
33976
FUNCTIONAL DEVICE OPERATION
LOGIC COMMANDS AND REGISTERS
DATA INPUT
The Input Shift register captures data at the falling edge of
the SCLK clock. The SCLK clock pulses exactly 16 times only
inside the transmission windows (
CS
in a logic [0] state). By
the time the
CS
signal goes to logic [1] again, the contents of
the Input Shift register are transferred to the appropriate
internal register addressed in bits 15:13. The minimum time
CS
should be kept high depends on the internal clock speed,
specified in the
SPI INTERFACE TIMING
(17)
section of the
Static Electrical Characteristics, found on page
6
. It must be
long enough so the internal clock is able to capture the data
from the Input Shift register and transfer it to the internal
registers.
DATA OUTPUT
At the first rising edge of the SCLK clock, with
CS
at
logic [0], the contents of the selected Status Word register
are transferred to the Output Shift register. The first 16 bits
clocked out are the status bits. If data continues to clock in
before the
CS
transitions to a logic [1], the device begins to
shift out the data previously clocked in FIFO after the
CS
first
transitioned to logic [0].
LOGIC COMMANDS AND REGISTERS
COMMUNICATION MEMORY MAPS AND REGISTER DESCRIPTIONS
The 33976 device is capable of interfacing directly with a
microcontroller via the 16-bit SPI protocol specified below.
The device is controlled by the microprocessor and reports
back status information via the SPI. This section provides a
detailed description of all registers accessible via serial
interface. The various registers control the behavior of this
device.
A message is transmitted by the master beginning with the
MSB (D15) and ending with the LSB (D0). Multiple messages
can be transmitted in succession to accommodate those
applications where daisy chaining is desirable, or to confirm
transmitted data, as long as the messages are all multiples of
16 bits. Data is transferred through daisy-chained devices, as
illustrated in
Figure 7
, page
12
. If an attempt is made to latch
in a message smaller than 16 bits wide, it is ignored.
Table 6
lists the seven registers the 33976 uses to
configure the device, control the state of the four H-bridge
outputs, and determine the type of status information that is
clocked back to the master. The registers are addressed via
D15:D13 of the incoming SPI word.
MODULE MEMORY MAP
Various registers of the 33976 SPI module are addressed
by the three MSBs of the 16-bit word received serially.
Functions to be controlled include:
Individual gauge drive enabling
Power-up/down
Internal clock calibration
Gauge pointer position and velocity
Gauge pointer zeroing
Air core motor movement emulation
Status information
Status reporting includes:
Individual gauge overtemperature condition
Battery overvoltage
Battery undervoltage
Pointer zeroing status
Internal clock status
Confirmation of coil output changes that should result in
pointer movement
Real time pointer position information
Real time pointer velocity step information
Pointer movement direction
Command pointer position status
RTZ accumulator value
REGISTER DESCRIPTIONS
The following section describes the registers, their
addresses, and their impact on device operation.
Address 000 — Power, Enable, Calibration, and
Configuration Register (PECCR)
The Power, Enable, Calibration, and Configuration
Register is illustrated in
Table 7
, page
14
. A write to the
33976 using this register allows the master to
(1) independently enable or disable the output drivers of the
two-gauge controllers, (2) calibrate the internal clock,
(3) disable the air core emulation, (4) select the direction of
the pointer movement during pointer positioning and zeroing,
(5) configure the device for the desired status information to
Table 6. Module Memory Map
Address
[15:13]
Register
Name
See Page
000
Power, Enable, Calibration,
and Configuration Register
PECCR
Page 13
001
Maximum Velocity Register
VELR
Page 15
010
Gauge 0 Position Register
POS0R
Page 16
011
Gauge 1 Position Register
POS1R
Page 16
100
Return to 0 Register
RTZR
Page 16
101
Return to 0
Configuration Register
RTZCR
Page 17
110
Ramp Selection Register
RMPSELR
Page 19
111
Reserved for Test
–
–