參數(shù)資料
型號(hào): AM79C961AVCW
廠商: ADVANCED MICRO DEVICES INC
元件分類: 微控制器/微處理器
英文描述: PCnet⑩-ISA II Jumperless, Full Duplex Single-Chip Ethernet Controller for ISA
中文描述: 2 CHANNEL(S), 10M bps, LOCAL AREA NETWORK CONTROLLER, PQFP144
封裝: TQFP-144
文件頁(yè)數(shù): 71/206頁(yè)
文件大?。?/td> 1507K
代理商: AM79C961AVCW
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)當(dāng)前第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)第158頁(yè)第159頁(yè)第160頁(yè)第161頁(yè)第162頁(yè)第163頁(yè)第164頁(yè)第165頁(yè)第166頁(yè)第167頁(yè)第168頁(yè)第169頁(yè)第170頁(yè)第171頁(yè)第172頁(yè)第173頁(yè)第174頁(yè)第175頁(yè)第176頁(yè)第177頁(yè)第178頁(yè)第179頁(yè)第180頁(yè)第181頁(yè)第182頁(yè)第183頁(yè)第184頁(yè)第185頁(yè)第186頁(yè)第187頁(yè)第188頁(yè)第189頁(yè)第190頁(yè)第191頁(yè)第192頁(yè)第193頁(yè)第194頁(yè)第195頁(yè)第196頁(yè)第197頁(yè)第198頁(yè)第199頁(yè)第200頁(yè)第201頁(yè)第202頁(yè)第203頁(yè)第204頁(yè)第205頁(yè)第206頁(yè)
Am79C961A
71
including the destination address, source address,
length/type and packet data.
The receive section of the MAC engine will detect an
incoming preamble sequence and lock to the encoded
clock. The internal MENDEC will decode the serial bit
stream and present this to the MAC engine. The MAC
will discard the first 8 bits of information before search-
ing for the SFD sequence. Once the SFD is detected,
all subsequent bits are treated as part of the frame. The
MAC engine will inspect the length field to ensure min-
imum frame size, strip unnecessary pad characters (if
enabled), and pass the remaining bytes through the
Receive FIFO to the host. If pad stripping is performed,
the MAC engine will also strip the received FCS bytes,
although the normal FCS computation and checking
will occur. Note that apart from pad stripping, the frame
will be passed unmodified to the host. If the length field
has a value of 46 or greater, the MAC engine will not
attempt to validate the length against the number of
bytes contained in the message.
If the frame terminates or suffers a collision before
64 bytes of information (after SFD) have been
received, the MAC engine will automatically delete the
frame from the Receive FIFO, without host
intervention.
Addressing (source and destination address
handling)
The first 6 bytes of information after SFD will be inter-
preted as the destination address field. The MAC
engine provides facilities for physical, logical, and
broadcast address reception. In addition, multiple
physical addresses can be constructed (perfect
address filtering) using external logic in conjunction
with the EADI interface.
Error detection (physical medium transmission
errors)
The MAC engine provides several facilities which
report and recover from errors on the medium. In addi-
tion, the network is protected from gross errors due to
inability of the host to keep pace with the MAC engine
activity.
On completion of transmission, the following transmit
status is available in the appropriate TMD and CSR
areas:
I
The exact number of transmission retry attempts
(ONE, MORE, or RTRY).
I
Whether the MAC engine had to Defer (DEF) due to
channel activity.
I
Loss of Carrier, indicating that there was an inter-
ruption in the ability of the MAC engine to monitor its
own transmission. Repeated LCAR errors indicate
a potentially faulty transceiver or network
connection.
I
Late Collision (LCOL) indicates that the transmis-
sion suffered a collision after the slot time. This is
indicative of a badly configured network. Late colli-
sions should not occur in a normal operating net-
work.
I
Collision Error (CERR) indicates that the trans-
ceiver did not respond with an SQE Test message
within the predetermined time after a transmission
completed. This may be due to a failed transceiver,
disconnected or faulty transceiver drop cable, or the
fact the transceiver does not support this feature (or
the feature is disabled).
In addition to the reporting of network errors, the MAC
engine will also attempt to prevent the creation of any
network error due to the inability of the host to service
the MAC engine. During transmission, if the host fails
to keep the Transmit FIFO filled sufficiently, causing an
underflow, the MAC engine will guarantee the message
is either sent as a runt packet (which will be deleted by
the receiving station) or has an invalid FCS (which will
also cause the receiver to reject the message).
The status of each receive message is available in the
appropriate RMD and CSR areas. FCS and Framing
errors (FRAM) are reported, although the received
frame is still passed to the host. The FRAM error will
only be reported if an FCS error is detected and there
are a non-integral number of bits in the message. The
MAC engine will ignore up to seven additional bits at
the end of a message (dribbling bits), which can occur
under normal network operating conditions. The recep-
tion of eight additional bits will cause the MAC engine
to de-serialize the entire byte, and will result in the
received message and FCS being modified.
The PCnet-ISA II controller can handle up to 7 dribbling
bits when a received packet terminates. During the
reception, the CRC is generated on every serial bit
(including the dribbling bits) coming from the cable,
although the internally saved CRC value is only
updated on the eighth bit (on each byte boundary). The
framing error is reported to the user as follows:
1. If the number of the dribbling bits are 1 to 7 and
there is no CRC error, then there is no Framing error
(FRAM = 0).
2. If the number of the dribbling bits are less than 8
and there is a CRC error, then there is also a
Framing error (FRAM = 1).
3. If the number of dribbling bits = 0, then there is no
Framing error. There may or may not be a CRC
(FCS) error.
Counters are provided to report the Receive Collision
Count and Runt Packet Count used for network statis-
tics and utilization calculations.
Note that if the MAC engine detects a received packet
which has a 00b pattern in the preamble (after the first
相關(guān)PDF資料
PDF描述
AM79C961AVIW PCnet⑩-ISA II Jumperless, Full Duplex Single-Chip Ethernet Controller for ISA
Am79C965A PCnet?-32 Single-Chip 32-Bit Ethernet Controller
AM79C970AKCW PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller for PCI Local Bus Product
AM79C970AKC PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller for PCI Local Bus Product
AM79C970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller for PCI Local Bus Product
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AM79C961AVI 制造商:Rochester Electronics LLC 功能描述:
AM79C961AVI/W 制造商:未知廠家 制造商全稱:未知廠家 功能描述:LAN Node Controller
AM79C961AVI\\W 制造商:Rochester Electronics LLC 功能描述:
AM79C961AVI\W 制造商:Rochester Electronics LLC 功能描述:
AM79C961AVIW 制造商:AMD 制造商全稱:Advanced Micro Devices 功能描述:PCnet⑩-ISA II Jumperless, Full Duplex Single-Chip Ethernet Controller for ISA