參數(shù)資料
型號(hào): AD5932YRUZ-REEL7
廠商: Analog Devices Inc
文件頁(yè)數(shù): 7/28頁(yè)
文件大?。?/td> 0K
描述: IC PROG WAVEFORM GENERAT 16TSSOP
產(chǎn)品培訓(xùn)模塊: Direct Digital Synthesis Tutorial Series (1 of 7): Introduction
Direct Digital Synthesizer Tutorial Series (7 of 7): DDS in Action
Direct Digital Synthesis Tutorial Series (3 of 7): Angle to Amplitude Converter
Direct Digital Synthesis Tutorial Series (6 of 7): SINC Envelope Correction
Direct Digital Synthesis Tutorial Series (4 of 7): Digital-to-Analog Converter
Direct Digital Synthesis Tutorial Series (2 of 7): The Accumulator
標(biāo)準(zhǔn)包裝: 1,000
分辨率(位): 10 b
主 fclk: 50MHz
調(diào)節(jié)字寬(位): 24 b
電源電壓: 2.3 V ~ 5.5 V
工作溫度: -40°C ~ 125°C
安裝類型: 表面貼裝
封裝/外殼: 16-TSSOP(0.173",4.40mm 寬)
供應(yīng)商設(shè)備封裝: 16-TSSOP
包裝: 帶卷 (TR)
Data Sheet
AD5932
Rev. A | Page 15 of 28
THEORY OF OPERATION
The AD5932 is a general-purpose, synthesized waveform
generator capable of providing digitally programmable
waveform sequences in both the frequency and time domain.
The device contains embedded digital processing to provide a
scan of a user-programmable frequency profile allowing enhanced
frequency control. Because the device is preprogrammable, it
eliminates continuous write cycles from a DSP/microcontroller
in generating a particular waveform.
FREQUENCY PROFILE
The frequency profile is defined by the start frequency (FSTART),
the frequency increment (Δf) and the number of increments
per scan (NINCR). The increment interval between frequency
increments, tINT, is either user-programmable with the interval
automatically determined by the device (auto-increment mode),
or externally controlled via a hardware pin (external increment
mode). For automatic update, the interval profile can be for
either a fixed number of clock periods or a fixed number of
output waveform cycles.
In the auto-increment mode, a single pulse at the CTRL pin starts
and executes the frequency scan. In the external-increment mode,
the CTRL pin also starts the scan, but the frequency increment
interval is determined by the time interval between sequential
0/1 transitions on the CTRL pin.
An example of a 2-step frequency scan is shown in Figure 30.
Note the frequency swept output signal is continuously available
and is, therefore, phase continuous at all frequency increments.
05416-
030
2
1
NUMBER OF STEP CHANGES
Figure 30. Operation of the AD5932
When the AD5932 completes the frequency scan from
frequency start to frequency end, that is, from FSTART
incrementally to (FSTART + NINCR × Δf), it continues to output
the last frequency in the scan (see Figure 31). Note that the
frequency scan time is given by (NINCR + 1) × tINT.
FSTART
MIDSCALE
FINAL
FREQUENCY
OUT
05416-
031
Figure 31. Frequency Scan
SERIAL INTERFACE
The AD5932 has a standard 3-wire serial interface that is
compatible with SPI, QSPI, MICROWIRE, and DSP
interface standards.
Data is loaded into the device as a 16-bit word under the
control of a serial clock input, SCLK. The timing diagram for
this operation is shown in Figure 4.
The FSYNC input is a level-triggered input that acts as a frame
synchronization and chip enable. Data can be transferred into the
device only when FSYNC is low. To start the serial data transfer,
FSYNC should be taken low, observing the minimum FSYNC to
SCLK falling edge setup time, t7. After FSYNC goes low, serial
data is shifted into the device's input shift register on the falling
edges of SCLK for 16 clock pulses. FSYNC may be taken high
after the 16th falling edge of SCLK, observing the minimum
SCLK falling edge to FSYNC rising edge time, t8.Alternatively,
FSYNC can be kept low for a multiple of 16 SCLK pulses and
then brought high at the end of the data transfer. In this way, a
continuous stream of 16-bit words can be loaded while FSYNC is
held low. FSYNC should only go high after the 16th SCLK falling
edge of the last word is loaded.
The SCLK can be continuous, or, alternatively, the SCLK can
idle high or low between write operations.
POWERING UP THE AD5932
When the AD5932 is powered up, the part is in an undefined
state and, therefore, must be reset before use. The seven registers
(control and frequency) contain invalid data and need to be set
to a known value by the user. The control register should be the
first register to be programmed, as this sets up the part. Note
that a write to the control register automatically resets the internal
state machines and provides an analog output of midscale,
because it performs the same function as the INTERRUPT pin.
Typically, this is followed by a serial loading of all the required
scan parameters. The DAC output remains at midscale until a
frequency scan is started using the CTRL pin.
相關(guān)PDF資料
PDF描述
AD5933YRSZ-REEL7 NETWORK ANALYZER 12B 1MSP 16SSOP
AD5934YRSZ IC NTWK ANALYZER 12B 1MSP 16SSOP
AD598JR IC LVDT SGNL COND OSC/REF 20SOIC
AD660BR IC DAC 16BIT MONO W/VREF 24-SOIC
AD6620ASZ IC DGTL RCVR DUAL 67MSPS 80-PQFP
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD5933 制造商:AD 制造商全稱:Analog Devices 功能描述:1 MSPS 12-Bit Impedance Converter, Network Analyzer
AD5933BRSZ-U1 制造商:Analog Devices 功能描述:CNVRTR NETWORK ANALYZER 16SSOP - Rail/Tube
AD5933YRSZ 功能描述:IC NTWK ANALYZER 12B 1MSP 16SSOP RoHS:是 類別:集成電路 (IC) >> 接口 - 直接數(shù)字合成 (DDS) 系列:- 產(chǎn)品變化通告:Product Discontinuance 27/Oct/2011 標(biāo)準(zhǔn)包裝:2,500 系列:- 分辨率(位):10 b 主 fclk:25MHz 調(diào)節(jié)字寬(位):32 b 電源電壓:2.97 V ~ 5.5 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:16-TSSOP(0.173",4.40mm 寬) 供應(yīng)商設(shè)備封裝:16-TSSOP 包裝:帶卷 (TR)
AD5933YRSZ 制造商:Analog Devices 功能描述:IC IMPEDANCE CONV 1MSPS 12BIT 16SSOP
AD5933YRSZ-REEL7 功能描述:NETWORK ANALYZER 12B 1MSP 16SSOP RoHS:是 類別:集成電路 (IC) >> 接口 - 直接數(shù)字合成 (DDS) 系列:- 產(chǎn)品變化通告:Product Discontinuance 27/Oct/2011 標(biāo)準(zhǔn)包裝:2,500 系列:- 分辨率(位):10 b 主 fclk:25MHz 調(diào)節(jié)字寬(位):32 b 電源電壓:2.97 V ~ 5.5 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:16-TSSOP(0.173",4.40mm 寬) 供應(yīng)商設(shè)備封裝:16-TSSOP 包裝:帶卷 (TR)