
User’s Manual G12702EJ8V0UM00
30
<1> Design objectives
Positive power supply using
PC7805AHF
Maximum output current
IO max. = 0.6 (A)
Maximum voltage difference between input and output
VDIF max. = 6 (V)
Maximum operating ambient temperature
TA max. = 60 (
°C)
Maximum junction temperature
TJ max. = 100 (
°C)
<2> Heatsink thermal resistance calculation
In a used state, the junction temperature TJ is the following.
TJ = (Rth(J-C) +
θC-HS + θHS) PD + TA ...................................................................................................... (6.3)
Rth(J-C): Thermal resistance (junction to case)
θC-HS: Thermal resistance (case to heatsink)
θHS:
Thermal resistance of heatsink
PD:
Power dissipation
Here, TJ max. = 100 (
°C), TA max. = 60 (°C),
θC-HS << 1 (°C/W), and Rth(J-C) = 5.0 (°C/W)
By substituting PD max. = VDIF max.
× IO max. = 3.6 (W) in expression (6.3), find the thermal resistance
θHS needed
in the heatsink.
θHS =
– Rth(J-C) –
θC-HS
= 6.1 (
°C/W) .................................................................................................................................... (6.4)
<3> Determination of size of heatsink
From expression (6.4), the design objectives can be satisfied using a heatsink of 6.1 (
°C/W).
Figure 6-5 shows the relationship between the thickness, surface area, and thermal resistance of an
aluminum board.
By using a 3 mm thick 60 cm
2 aluminum board here, it can be seen that the heatsink will have the necessary
thermal resistance.
(Use example without heatsink)
The junction temperature TJ in the used state when not installing a heatsink is the following.
TJ = Rth(J-A)
PD + TA ........................................................................................................................ (6.5)
Rth(J-A): Thermal resistance (junction to ambient air) (free air)
PD:
Power dissipation
TA:
Operating ambient temperature
Setting TJ to 100
°C or less in the used state is recommended.
.
TJ – TA
PD