
www.ti.com
SLVS681E – JUNE 2006 – REVISED APRIL 2010
With decreasing load current, the device automatically switches into pulse skipping operation in which the power
stage operates intermittently based on load demand. By running cycles periodically the switching losses are
minimized and the device runs with a minimum quiescent current, maintaining high efficiency.
Under-Voltage Lockout
The under-voltage lockout circuit prevents the device from malfunctioning at low input voltages, and from
excessive discharge of the battery, and disables the converters. The under-voltage lockout threshold is typically
1.5V; maximum of 2.35V. In case the default register values are overwritten by the Interface, the new values in
the registers REG_DEF_1_High, REG_DEF_1_Low and REG_DEF_2 remain valid as long the supply voltage
does not fall below the under-voltage lockout threshold, independent of whether the converters are disabled.
MODE SELECTION
The MODE/DATA pin allows mode selection between forced PWM Mode and Power Save Mode for both
converters. Furthermore, this pin is a multipurpose pin and provides (besides Mode selection) a one-pin interface
to receive serial data from a host to set the output voltage. This is described in the EasyScale Interface
section.
Connecting this pin to GND enables the automatic PWM and power save mode operation. The converters
operates in fixed-frequency PWM mode at moderate-to-heavy loads, and in the PFM mode during light loads,
maintaining high efficiency over a wide load current range.
Pulling the MODE/DATA pin high forces both converters to operate constantly in the PWM mode, even at light
load currents. The advantage is that the converters operate with a fixed frequency, allowing simple filtering of the
switching frequency for noise-sensitive applications. In this mode, the efficiency is lower compared to the power
save mode during light loads. For additional flexibility, it is possible to switch from power save mode to forced
PWM mode during operation. This allows efficient power management by adjusting the operation of the converter
to the specific system requirements.
In case the operation mode is changed from forced PWM mode (MODE/DATA = high) to Power Save Mode
Enable (MODE/DATA = 0), the Power Save Mode is enabled after a delay time of ttimeout , which is max. 520ms.
The forced PWM Mode operation is enabled immediately with Pin MODE/DATA set to 1.
ENABLE
The device has a separate EN pin for each converter to start up each converter independently. If EN1 and EN2
are set to high, the corresponding converter starts up with soft start as previously described.
Pulling EN1 and EN2 pin low forces the device into shutdown, with a shutdown quiescent current of typically
1.2mA. In this mode, the P and N-Channel MOSFETs are turned-off and the entire internal control circuitry is
switched-off. For proper operation the EN1 and EN2 pins must be terminated and must not be left floating.
DEF_1 PIN FUNCTION
The DEF_1 pin is dedicated to converter 1 and makes the output voltage selection very flexible to support
dynamic voltage management.
Depending on the device version, this pin works either as:
1. Analog input for adjustable output voltage setting (TPS62400):
–
Connecting an external resistor network to this pin adjusts the default output voltage to any value starting
from 0.6V to VIN
2. Digital input for fixed default output voltage selection (TPS62401):
–
In case this pin is tied to low level, the output voltage is set according to the value in register
REG_DEF_1_Low. The default voltage will be 1.575V. If tied to high level, the output voltage is set
according to the value in register REG_DEF_1_High. The default value in this case is 1.1V. Depending
on the level of Pin DEF_1, it selects between the two registers REG_DEF_1_Low and REG_DEF_1_High
for output voltage setting. Each register content (and therefore output voltage) can be changed
individually via the EasyScale interface. This makes the device very flexible in terms of output voltage
Copyright 2006–2010, Texas Instruments Incorporated
19