參數(shù)資料
型號(hào): SL28EB719AZI
廠商: Silicon Laboratories Inc
文件頁(yè)數(shù): 3/22頁(yè)
文件大小: 0K
描述: IC CLK CK505 TNLCK/TPCLF 48TSSOP
標(biāo)準(zhǔn)包裝: 39
系列: EProClock®
類型: 時(shí)鐘/頻率發(fā)生器,多路復(fù)用器
PLL:
主要目的: Intel CPU 服務(wù)器
輸入: 時(shí)鐘,晶體
輸出: HCSL,LVCMOS
電路數(shù): 1
比率 - 輸入:輸出: 1:13
差分 - 輸入:輸出: 無(wú)/是
頻率 - 最大: 166.67MHz
電源電壓: 3.135 V ~ 3.465 V
工作溫度: -40°C ~ 85°C
安裝類型: *
封裝/外殼: *
供應(yīng)商設(shè)備封裝: *
包裝: *
SL28EB719
DOC#: SP-AP-0005 (Rev. AB)
Page 11 of 22
The SL28EB719 requires a Parallel Resonance Crystal.
Substituting
a
series
resonance
crystal
causes
the
SL28EB719 to operate at the wrong frequency and violates
the ppm specification. For most applications there is a
300-ppm frequency shift between series and parallel crystals
due to incorrect loading.
Crystal Loading
Crystal loading plays a critical role in achieving low ppm perfor-
mance. To realize low ppm performance, use the total capac-
itance the crystal sees to calculate the appropriate capacitive
loading (CL).
Figure 1 shows a typical crystal configuration using the two
trim capacitors. It is important that the trim capacitors are in
series with the crystal. It is not true that load capacitors are in
parallel with the crystal and are approximately equal to the
load capacitance of the crystal.
Calculating Load Capacitors
In addition to the standard external trim capacitors, consider
the trace capacitance and pin capacitance to calculate the
crystal loading correctly. Again, the capacitance on each side
is in series with the crystal. The total capacitance on both side
is twice the specified crystal load capacitance (CL). Trim
capacitors are calculated to provide equal capacitive loading
on both sides.
,
Use the following formulas to calculate the trim capacitor
values for Ce1 and Ce2.
CL....................................................Crystal load capacitance
CLe......................................... Actual loading seen by crystal
using standard value trim capacitors
Ce..................................................... External trim capacitors
Cs .............................................. Stray capacitance (terraced)
Ci ...........................................................Internal capacitance
(lead frame, bond wires, etc.)
PD# (Power down) Clarification
The CKPWRGD/PD# pin is a dual-function pin. During initial
power up, the pin functions as CKPWRGD. Once CKPWRGD
has been sampled HIGH by the clock chip, the pin assumes
PD# functionality. The PD# pin is an asynchronous active
LOW input used to shut off all clocks cleanly before shutting
off power to the device. This signal is synchronized internally
to the device before powering down the clock synthesizer. PD#
is also an asynchronous input for powering up the system.
When PD# is asserted LOW, clocks are driven to a LOW value
and held before turning off the VCOs and the crystal oscillator.
PD# (Power down) Assertion
When PD is sampled HIGH by two consecutive rising edges
of CPUC, all single-ended outputs will be held LOW on their
next HIGH-to-LOW transition and differential clocks must held
LOW. When PD mode is desired as the initial power on state,
PD must be asserted HIGH in less than 10
s after asserting
CKPWRGD.
PD# Deassertion
The power up latency is less than 1.8 ms. This is the time from
the deassertion of the PD# pin or the ramping of the power
supply until the time that stable clocks are generated from the
clock chip. All differential outputs stopped in a three-state
condition, resulting from power down are driven high in less
than 300
s of PD# deassertion to a voltage greater than
200 mV. After the clock chip’s internal PLL is powered up and
locked, all outputs are enabled within a few clock cycles of
each clock. Figure 4 is an example showing the relationship of
clocks coming up.
Table 6. Crystal Recommendations
Frequency
(Fund)
Cut
Loading
Load Cap
Drive
(max.)
Shunt Cap
(max.)
Motional
(max.)
Tolerance
(max.)
Stability
(max.)
Aging
(max.)
25.000MHz
AT
Parallel
20 pF
0.1 mW
5 pF
0.016 pF
35 ppm
30 ppm
5 ppm
Figure 1. Crystal Capacitive Clarification
Figure 2. Crystal Loading Example
Load Capacitance (each side)
Total Capacitance (as seen by the crystal)
Ce = 2 * CL – (Cs + Ci)
Ce1 + Cs1 + Ci1
1
+
Ce2 + Cs2 + Ci2
1
(
)
1
=
CLe
相關(guān)PDF資料
PDF描述
SL28EB740AZI IC CLK CK505 TNLCK/TPCLF 56TSSOP
SL28PCIE10ALI IC CLOCK PCIE GEN2 4CH 32QFN
SL28PCIE14ALIT IC CLOCK PCIE GEN2/3 BUFF 32QFN
SM3-19.44M IC MOD TIMING 19.440MHZ STATUM 3
SM3E-19.44M IC MOD TIMING 19.440MHZ STRAT 3E
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
SL28EB719AZIT 功能描述:時(shí)鐘發(fā)生器及支持產(chǎn)品 Tunnel Creek Queen’s Bay platform RoHS:否 制造商:Silicon Labs 類型:Clock Generators 最大輸入頻率:14.318 MHz 最大輸出頻率:166 MHz 輸出端數(shù)量:16 占空比 - 最大:55 % 工作電源電壓:3.3 V 工作電源電流:1 mA 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:QFN-56
SL28EB733ALI 制造商:Silicon Laboratories Inc 功能描述:4 OUTPUT PCI EXPRESS (PCIE) GEN1/2 WITH 25MHZ AND 33MHZ LVCM - Bulk 制造商:Silicon Laboratories Inc 功能描述:IC EMB CLOCK GENERATOR 32QFN
SL28EB733ALIT 制造商:Silicon Laboratories Inc 功能描述:4 OUTPUT PCI EXPRESS (PCIE) GEN1/2 WITH 25MHZ AND 33MHZ LVCM - Tape and Reel 制造商:Silicon Laboratories Inc 功能描述:IC EMB CLOCK GENERATOR 32QFN
SL28EB740AZI 功能描述:時(shí)鐘發(fā)生器及支持產(chǎn)品 Tunnel Creek Queen’s Bay platform RoHS:否 制造商:Silicon Labs 類型:Clock Generators 最大輸入頻率:14.318 MHz 最大輸出頻率:166 MHz 輸出端數(shù)量:16 占空比 - 最大:55 % 工作電源電壓:3.3 V 工作電源電流:1 mA 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:QFN-56
SL28EB740AZIT 功能描述:時(shí)鐘發(fā)生器及支持產(chǎn)品 Tunnel Creek Queen’s Bay platform RoHS:否 制造商:Silicon Labs 類型:Clock Generators 最大輸入頻率:14.318 MHz 最大輸出頻率:166 MHz 輸出端數(shù)量:16 占空比 - 最大:55 % 工作電源電壓:3.3 V 工作電源電流:1 mA 最大工作溫度:+ 85 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:QFN-56