
5
Data Device Corporation
www.ddc-web.com
SDC-14580
H-05/04-0
THEORY OF OPERATION
The SDC-14580 Series are small, 36 pin DDIP Synchro-to-Digital
or Resolver-to-Digital hybrid converters. As shown in the block
diagram (FIGURE 1), the SDC-14580 can be broken down into the
following functional parts: Signal Input Option, Converter, Analog
Conditioner, Power Supply Conditioner, and Digital Interface.
CONVERTER OPERATION
As shown in FIGURE 1, the converter section of the SDC-14580
contains a high accuracy control transformer, demodulator, error
processor, voltage controlled oscillator (VCO), up-down counter,
and reference conditioner. The converter produces a digital
angle which tracks the analog input angle to within the specified
accuracy of the converter.
The control transformer performs the following trigonometric
computation:
sin(
θ - φ) = sinθ cosφ - cosθ sinφ
Where:
θ is angle theta representing the resolver shaft position.
φ is digital angle phi contained in the up/down counter.
The tracking process consists of continually adjusting
φ to make
(
θ - φ) = 0, so that φ will represent the shaft position θ.
The output of the demodulator is an analog DC level proportion-
al to sin(
θ-φ). The error processor receives its input from the
demodulator and integrates this sin(
θ - φ) error signal which then
drives the VCO. The VCO’s clock pulses are accumulated by the
up/down counter. The velocity voltage accuracy, linearity and off-
set are determined by the quality of the VCO. Functionally, the
up/down counter is an incremental integrator. Therefore, there
are two stages of integration which makes the converter a Type
II tracking servo.
In a Type II servo, the VCO always settles to a counting rate
which makes d
φ/dt equal to dθ/dt without lag. The output data will
always be fresh and available as long as the maximum tracking
rate of the converter is not exceeded.
The reference conditioner is a comparator that produces the
square wave reference voltage which drives the demodulator. Its
single ended Input Z is 50k Ohms min, 100k Ohms differential.
SPECIAL FUNCTIONS
REFERENCE SYNTHESIZER-QUADRATURE VOLTAGES
The synthesized reference section of the SDC-14580 eliminates
errors caused by quadrature voltage. Due to the inductive nature
of synchros and resolvers, their signals typically lead the refer-
ence signal (RH and RL) by about 6°. When an uncompensated
reference signal is used to demodulate the control transformer’s
output, quadrature voltages are not completely eliminated. In a
12- or 14-bit converter it is not necessary to compensate for the
reference signal’s phase shift. A 6° phase shift will, however,
cause problems for the one minute accuracy converters. As
shown in FIGURE 1, the converter synthesizes its own
cos(
ωt+α) reference signal from the sinθ-cos(ωt+α), cosθ-cos(ωt
+
α) signal inputs and from the cosωt reference input. The phase
angle of the synthesized reference is determined by the signal
input. The reference input is used to choose between the +180°
and -180° phases. The synthesized reference will always be
exactly in phase with the signal input, and quadrature errors will
therefore be eliminated. The synthesized reference circuit
also eliminates the 180° false error null hangup.
Quadrature voltages in a resolver or synchro are by definition the
resulting 90° fundamental signal in the nulled out error voltage
(e) in the converter. A digital position error will result due to the
interaction of this quadrature voltage and a reference phase shift
between the converter signal and reference inputs. The magni-
tude of this error is given by the following formula:
Magnitude of Error=(Quadrature Voltage/F.S.signal) tan(
α)
Where:
Magnitude of Error is in radians.
Quadrature Voltage is in volts.
Full Scale signal is in volts.
α = signal to REF phase shift
An example of the magnitude of error is as follows:
Let: Quadrature Voltage = 11.8 mV
Let:
α = 6°
Then: Magnitude of Error = 0.35 min
1 LSB in the 16th bit.
Quadrature is composed of static quadrature which is
specified by the synchro or resolver supplier plus the speed
voltage which is determined by the following formula:
Speed Voltage=(rotational speed/carrier frequency) F.S. signal
Where: Speed Voltage is the quadrature due to rotation.
Rotational speed is the RPS (rotations per second) of
the synchro or resolver.
Carrier frequency is the REF in Hz
BUILT-IN-TEST (BIT, PIN 34)
The Built-In-Test output (BIT) monitors the level of error (D) from
the demodulator. D represents the difference in the input and
output angles and ideally should be zero. If it exceeds approxi-
mately 65 LSBs (of the selected resolution), the logic level at BIT
will change from a logic 1 to logic 0. This condition will occur dur-
ing a large step and reset after the converter settles out. BIT will