參數(shù)資料
型號: S80C32-44:RD
廠商: ATMEL CORP
元件分類: 微控制器/微處理器
英文描述: 8-BIT, 44 MHz, MICROCONTROLLER, PQCC44
封裝: PLASTIC, LCC-44
文件頁數(shù): 27/152頁
文件大?。?/td> 2528K
122
2486AA–AVR–02/2013
ATmega8(L)
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
Transmission Flag (SPIF). If the SPI interrupt enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.
When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission
Flag, SPIF is set. If the SPI interrupt enable bit, SPIE, in the SPCR Register is set, an interrupt is
requested. The Slave may continue to place new data to be sent into SPDR before reading the
incoming data. The last incoming byte will be kept in the Buffer Register for later use.
Figure 58. SPI Master-Slave Interconnection
The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.
In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the minimum low and high periods should be:
Low period: longer than 2 CPU clock cycles
High period: longer than 2 CPU clock cycles
When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to Table 47. For more details on automatic port overrides, refer to “Alternate Port
Note:
1. See “Port B Pins Alternate Functions” on page 58 for a detailed description of how to define
the direction of the user defined SPI pins
Table 47. SPI Pin Overrides
Pin
Direction, Master SPI
Direction, Slave SPI
MOSI
User Defined
Input
MISO
Input
User Defined
SCK
User Defined
Input
SS
User Defined
Input
MSB
MASTER
LSB
8 BIT SHIFT REGISTER
MSB
SLAVE
LSB
8 BIT SHIFT REGISTER
MISO
MOSI
SPI
CLOCK GENERATOR
SCK
SS
MISO
MOSI
SCK
SS
VCC
SHIFT
ENABLE
相關PDF資料
PDF描述
MQ80C52XXX-36/883 8-BIT, MROM, 36 MHz, MICROCONTROLLER, CQFP44
S80C32-L16D 8-BIT, 16 MHz, MICROCONTROLLER, PQCC44
MP80C51C-36D 8-BIT, MROM, 36 MHz, MICROCONTROLLER, PDIP40
MR80C52EXXX-16SHXXX:R 8-BIT, MROM, 16 MHz, MICROCONTROLLER, CQCC44
MD83C154DCXXX-25P883D 8-BIT, MROM, 25 MHz, MICROCONTROLLER, CDIP40
相關代理商/技術參數(shù)
參數(shù)描述
S80C32-L16 制造商:未知廠家 制造商全稱:未知廠家 功能描述:8-Bit Microcontroller
S80C32-L16R 制造商:未知廠家 制造商全稱:未知廠家 功能描述:8-Bit Microcontroller
S80C376CB8 WAF 制造商:Intel 功能描述:
S80C42 制造商:Intel 功能描述:
S80C51 WAF 制造商:Intel 功能描述: