
V
I = 5 V
fSW = 500 kHz
0
2
4
6
8
10
V
O = 0.8 V
V
O = 1.8 V
V
O = 1.2 V
V
O = 3.3 V
V
O = 2.5 V
60
40
70
50
90
100
80
h
–
E
ff
ic
ie
n
c
y
–
%
I
O – Output Current – A
0
2
4
6
8
10
V
I = 5 V
fSW = 750 kHz
V
O = 0.8 V
V
O = 1.8 V
V
O = 1.2 V
V
O = 2.5 V
V
O = 3.3 V
60
40
70
50
90
100
80
h
–
E
ff
ic
ie
n
c
y
–
%
I
O – Output Current – A
0
2
4
6
8
10
60
40
70
50
90
100
80
V
I = 5 V
fSW = 1 MHz
V
O = 0.8 V
V
O = 1.8 V
V
O = 1.2 V
V
O = 2.5 V
V
O = 3.3 V
h
–
E
ff
ic
ie
n
c
y
–
%
I
O – Output Current – A
0
2
4
6
8
10
I
O – Output Current – A
1.0
0
1.5
0.5
2.5
3.0
2.0
P
D
–
P
o
w
e
r
D
is
s
ip
a
ti
o
n
–
W
V
O = 3.3 V
V
O = 2.5 V
V
O = 1.8 V
V
O = 1.2 V
V
O = 0.8 V
V
I = 5 V
fSW = 750 kHz
0
2
4
6
8
10
1.0
0
1.5
0.5
2.5
3.0
2.0
P
D
–
P
o
w
e
r
D
is
s
ip
a
ti
o
n
–
W
I
O – Output Current – A
V
O = 1.8 V
V
O = 3.3 V
V
O = 2.5 V
V
I = 5 V
fSW = 500 kHz
V
O = 0.8 V
V
O = 1.2 V
0
I
O – Output Current – A
1.0
0
1.5
0.5
2.5
3.0
2.0
P
D
–
P
o
w
e
r
D
is
s
ip
a
ti
o
n
–
W
V
I = 5 V
fSW = 1 MHz
V
O = 3.3 V
V
O = 2.5 V
2
4
6
8
10
V
O = 1.8 V
V
O = 1.2 V
V
O = 0.8 V
V
I = 5 V
fSW = 750 kHz
Natural Convection
200 LFM
100 LFM
0
1
2
3
4
5
40
20
60
30
80
90
70
50
T
A
–
A
m
b
ie
n
t
T
e
m
p
e
ra
tu
re
–
°C
P
D – Total Power Dissipation – W
P
D(VOA)+PD(VOB)
400 LFM
V
I = 5 V
fSW = 1 MHz
0
1
2
3
4
5
40
20
60
30
80
90
70
50
T
A
–
A
m
b
ie
n
t
T
e
m
p
e
ra
tu
re
–
°C
400 LFM
Natural Convection
200 LFM
100 LFM
P
D – Total Power Dissipation – W
P
D(VOA)+PD(VOB)
0
1
2
3
4
5
40
20
60
30
80
90
70
50
T
A
–
A
m
b
ie
n
t
T
e
m
p
e
ra
tu
re
–
°C
P
D – Total Power Dissipation – W
400 LFM
Natural Convection
200 LFM
100 LFM
P
D(VOA)+PD(VOB)
V
I = 5 V
fSW = 500 kHz
www.ti.com
SLTS295B – DECEMBER 2009 – REVISED DECEMBER 2010
TYPICAL CHARACTERISTICS (VI = 5 V)
. (1)(2)
Figure 10. Efficiency
Figure 11. Efficiency
Figure 12. Efficiency
Figure 13. Power Dissipation
Figure 14. Power Dissipation
Figure 15. Power Dissipation
Figure 16. Safe Operating Area
Figure 17. Safe Operating Area
Figure 18. Safe Operating Area
(1)
The electrical characteristic data
(Figure 10 through
Figure 15) has been developed from actual products tested at 25°C. This data is
considered typical for the converter.
(2)
The temperature derating curves
(Figure 16 through
Figure 18) represent the conditions at which internal components are at or below
the manufacturer's maximum operating temperatures. Derating limits apply to modules soldered directly to a 100-mm x 100-mm,
double-sided PCB with 2-oz. copper. See the Safe Operating Area application section of this datasheet.
Copyright 2009–2010, Texas Instruments Incorporated
7