PIC24HJXXXGPX06/X08/X10
DS70175H-page 50
2009 Microchip Technology Inc.
4.2.6
SOFTWARE STACK
In addition to its use as a working register, the W15
register in the PIC24HJXXXGPX06/X08/X10 devices is
also used as a software Stack Pointer. The Stack
Pointer always points to the first available free word
and grows from lower to higher addresses. It pre-dec-
rements for stack pops and post-increments for stack
any CALL instruction, the MSB of the PC is zero-
extended before the push, ensuring that the MSB is
always clear.
The Stack Pointer Limit register (SPLIM) associated
with the Stack Pointer sets an upper address boundary
for the stack. SPLIM is uninitialized at Reset. As is the
case for the Stack Pointer, SPLIM<0> is forced to ‘0’
because all stack operations must be word-aligned.
Whenever an EA is generated using W15 as a source
or destination pointer, the resulting address is
compared with the value in SPLIM. If the contents of
the Stack Pointer (W15) and the SPLIM register are
equal and a push operation is performed, a stack error
trap will not occur. The stack error trap will occur on a
subsequent push operation. Thus, for example, if it is
desirable to cause a stack error trap when the stack
grows beyond address 0x2000 in RAM, initialize the
SPLIM with the value 0x1FFE.
Similarly, a Stack Pointer underflow (stack error) trap is
generated when the Stack Pointer address is found to
be less than 0x0800. This prevents the stack from
interfering with the Special Function Register (SFR)
space.
A write to the SPLIM register should not be immediately
followed by an indirect read operation using W15.
FIGURE 4-5:
CALL
STACK FRAME
4.2.7
DATA RAM PROTECTION FEATURE
The PIC24H product family supports Data RAM protec-
tion features that enable segments of RAM to be
protected when used in conjunction with Boot and
Secure Code Segment Security. BSRAM (Secure RAM
segment for BS) is accessible only from the Boot Seg-
ment Flash code, when enabled. SSRAM (Secure
RAM segment for RAM) is accessible only from the
Secure Segment Flash code, when enabled. See
Table 4-1 for an overview of the BSRAM and SSRAM
SFRs.
4.3
Instruction Addressing Modes
The addressing modes in
Table 4-34 form the basis of
the addressing modes optimized to support the specific
features of individual instructions. The addressing
modes provided in the MAC class of instructions are
somewhat different from those in the other instruction
types.
4.3.1
FILE REGISTER INSTRUCTIONS
Most file register instructions use a 13-bit address field
(f) to directly address data present in the first 8192
bytes of data memory (Near Data Space). Most file
register instructions employ a working register, W0,
which is denoted as WREG in these instructions. The
destination is typically either the same file register or
WREG (with the exception of the MUL instruction),
which writes the result to a register or register pair. The
MOV
instruction allows additional flexibility and can
access the entire data space.
4.3.2
MCU INSTRUCTIONS
The 3-operand MCU instructions are of the form:
Operand 3 = Operand 1 <function> Operand 2
where Operand 1 is always a working register (i.e., the
addressing mode can only be Register Direct) which is
referred to as Wb. Operand 2 can be a W register,
fetched from data memory, or a 5-bit literal. The result
location can be either a W register or a data memory
location. The following addressing modes are
supported by MCU instructions:
Register Direct
Register Indirect
Register Indirect Post-Modified
Register Indirect Pre-Modified
5-bit or 10-bit Literal
Note:
A PC push during exception processing
concatenates the SRL register to the MSB
of the PC prior to the push.
<Free Word>
PC<15:0>
000000000
0
15
W15 (before CALL)
W15 (after CALL)
S
tac
kGr
ows
To
w
ar
ds
Hi
gh
er
Add
re
ss
0x0000
PC<22:16>
POP
: [--W15]
PUSH : [W15++]
Note:
Not all instructions support all the
addressing modes given above. Individual
instructions may support different subsets
of these addressing modes.