PIC18F2585/2680/4585/4680
DS39625C-page 182
Preliminary
2007 Microchip Technology Inc.
16.4.6
PROGRAMMABLE DEAD-BAND
DELAY
In half-bridge applications where all power switches are
modulated at the PWM frequency at all times, the power
switches normally require more time to turn off than to
turn on. If both the upper and lower power switches are
switched at the same time (one turned on and the other
turned off), both switches may be on for a short period of
time until one switch completely turns off. During this
brief interval, a very high current (
shoot-through current)
may flow through both power switches, shorting the
bridge supply. To avoid this potentially destructive
shoot-through current from flowing during switching,
turning on either of the power switches is normally
delayed to allow the other switch to completely turn off.
In the Half-Bridge Output mode, a digitally program-
mable
dead-band
delay
is
available
to
avoid
shoot-through current from destroying the bridge
power switches. The delay occurs at the signal transi-
tion from the non-active state to the active state. See
period in terms of microcontroller instruction cycles
(TCY or 4 TOSC). These bits are not available on
PIC18F2X8X devices, as the standard CCP1 module
does not support half-bridge operation.
16.4.7
ENHANCED PWM AUTO-SHUTDOWN
When the CCP1 is programmed for any of the Enhanced
PWM modes, the active output pins may be configured
for auto-shutdown. Auto-shutdown immediately places
the Enhanced PWM output pins into a defined shutdown
state when a shutdown event occurs.
A shutdown event can be caused by either of the
comparator
modules,
a
low
level
on
the
RB0/INT0/FLT0/AN10 pin, or any combination of these
three sources. The comparators may be used to monitor
a voltage input proportional to a current being monitored
in the bridge circuit. If the voltage exceeds a threshold,
the comparator switches state and triggers a shutdown.
Alternatively, a digital signal on the INT0 pin can also
trigger a shutdown. The auto-shutdown feature can be
disabled by not selecting any auto-shutdown sources.
The auto-shutdown sources to be used are selected
using the ECCPAS2:ECCPAS0 bits (bits<6:4> of the
ECCP1AS register).
When a shutdown occurs, the output pins are asyn-
chronously placed in their shutdown states, specified
by the PSSAC1:PSSAC0 and PSS1BD1:PSS1BD0
bits (ECCPAS3:ECCPAS0). Each pin pair (P1A/P1C
and P1B/P1D) may be set to drive high, drive low or be
tri-stated
(not
driving).
The
ECCPASE
bit
(ECCP1AS<7>) is also set to hold the Enhanced PWM
outputs in their shutdown states.
The ECCPASE bit is set by hardware when a shutdown
event occurs. If automatic restarts are not enabled, the
ECCPASE bit is cleared by firmware when the cause of
the shutdown clears. If automatic restarts are enabled,
the ECCPASE bit is automatically cleared when the
cause of the auto-shutdown has cleared.
If the ECCPASE bit is set when a PWM period begins,
the PWM outputs remain in their shutdown state for that
entire PWM period. When the ECCPASE bit is cleared,
the PWM outputs will return to normal operation at the
beginning of the next PWM period.
REGISTER 16-2:
ECCP1DEL: PWM CONFIGURATION REGISTER
Note:
Programmable dead-band delay is not
implemented in PIC18F2X8X devices with
Note:
Writing to the ECCPASE bit is disabled
while a shutdown condition is active.
R/W-0
PRSEN
PDC6(1)
PDC5(1)
PDC4(1)
PDC3(1)
PDC2(1)
PDC1(1)
PDC0(1)
bit 7
bit 0
bit 7
PRSEN: PWM Restart Enable bit
1
= Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event
goes away; the PWM restarts automatically
0
= Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM
bit 6-0
PDC6:PDC0: PWM Delay Count bits(1)
Delay time, in number of FOSC/4 (4 * TOSC) cycles, between the scheduled and actual time for
a PWM signal to transition to active.
Note 1: Reserved on PIC18F2X8X devices; maintain these bits clear.
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown