參數(shù)資料
型號: MZP4734A
廠商: ON SEMICONDUCTOR
元件分類: 參考電壓二極管
英文描述: 3 Watt DO-41 Surmetic 30 Zener Voltage Regulators
中文描述: 5.6 V, 1 W, SILICON, UNIDIRECTIONAL VOLTAGE REGULATOR DIODE, DO-41
封裝: PLASTIC, CASE 59-10, 2 PIN
文件頁數(shù): 5/8頁
文件大?。?/td> 57K
代理商: MZP4734A
MZP4729A Series
http://onsemi.com
5
APPLICATION NOTE
Since the actual voltage available from a given zener
diode is temperature dependent, it is necessary to determine
junction temperature under any set of operating conditions
in order to calculate its value. The following procedure is
recommended:
Lead Temperature, T
L
, should be determined from:
T
L
=
θ
LA
P
D
+ T
A
θ
LA
is the lead-to-ambient thermal resistance (
°
C/W) and P
D
is the power dissipation. The value for
θ
LA
will vary and
depends on the device mounting method.
θ
LA
is generally
30–40
°
C/W for the various clips and tie points in common
use and for printed circuit board wiring.
The temperature of the lead can also be measured using a
thermocouple placed on the lead as close as possible to the
tie point. The thermal mass connected to the tie point is
normally large enough so that it will not significantly
respond to heat surges generated in the diode as a result of
pulsed operation once steady-state conditions are achieved.
Using the measured value of T
L
, the junction temperature
may be determined by:
T
J
= T
L
+
T
JL
T
JL
is the increase in junction temperature above the lead
temperature and may be found from Figure 2 for a train of
power pulses (L = 3/8 inch) or from Figure 10 for dc power.
T
JL
=
θ
JL
P
D
For worst-case design, using expected limits of I
Z
, limits
of P
D
and the extremes of T
J
(
T
J
) may be estimated.
Changes in voltage, V
Z
, can then be found from:
V =
θ
VZ
T
J
θ
VZ
, the zener voltage temperature coefficient, is found
from Figures 5 and 6.
Under high power-pulse operation, the zener voltage will
vary with time and may also be affected significantly by the
zener resistance. For best regulation, keep current
excursions as low as possible.
Data of Figure 2 should not be used to compute surge
capability. Surge limitations are given in Figure 3. They are
lower than would be expected by considering only junction
temperature, as current crowding effects cause temperatures
to be extremely high in small spots resulting in device
degradation should the limits of Figure 3 be exceeded.
相關(guān)PDF資料
PDF描述
MZP4735A 3 Watt DO-41 Surmetic 30 Zener Voltage Regulators
MZP4736A 3 Watt DO-41 Surmetic 30 Zener Voltage Regulators
MZP4737A 3 Watt DO-41 Surmetic 30 Zener Voltage Regulators
MZP4738A 3 Watt DO-41 Surmetic 30 Zener Voltage Regulators
MZP4751 Low Current Operation at 250 ,Low Reverse Leakage,Low Noise Zener Diode
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MZP4734ARL 功能描述:穩(wěn)壓二極管 5.6V 3W RoHS:否 制造商:Vishay Semiconductors 齊納電壓:12 V 電壓容差:5 % 電壓溫度系數(shù):0.075 % / K 齊納電流: 功率耗散:3 W 最大反向漏泄電流:3 uA 最大齊納阻抗:7 Ohms 最大工作溫度:+ 150 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:DO-214AC 封裝:Reel
MZP4734ARLG 功能描述:穩(wěn)壓二極管 5.6V 3W RoHS:否 制造商:Vishay Semiconductors 齊納電壓:12 V 電壓容差:5 % 電壓溫度系數(shù):0.075 % / K 齊納電流: 功率耗散:3 W 最大反向漏泄電流:3 uA 最大齊納阻抗:7 Ohms 最大工作溫度:+ 150 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:DO-214AC 封裝:Reel
MZP4735 制造商:MOTOROLA 制造商全稱:Motorola, Inc 功能描述:1.0 WATT SURMETIC 30 SILICON ZENER DIODES
MZP4735A 制造商:ONSEMI 制造商全稱:ON Semiconductor 功能描述:3 Watt DO-41 Surmetic 30 Zener Voltage Regulators
MZP4735AG 制造商:ONSEMI 制造商全稱:ON Semiconductor 功能描述:3 Watt DO-41 Surmetic 30 Zener Voltage Regulators