參數(shù)資料
型號(hào): MMBD3005T1
廠商: ON SEMICONDUCTOR
元件分類(lèi): 二極管(射頻、小信號(hào)、開(kāi)關(guān)、功率)
英文描述: 0.2 A, 2 ELEMENT, SILICON, SIGNAL DIODE
封裝: SC-59, 3 PIN
文件頁(yè)數(shù): 19/32頁(yè)
文件大?。?/td> 298K
代理商: MMBD3005T1
Reliability and Quality Assurance
9–16
Motorola Small–Signal Transistors, FETs and Diodes Device Data
MECHANICAL SHOCK
This test is used to determine the ability of the device to
withstand a sudden change in mechanical stress due to abrupt
changes in motion as seen in handling, transportation, or
actual use.
Typical Test Conditions: Acceleration = 1500 g’s, Orienta-
tion = X1, Y1, Y2 plane, t = 0.5 msec, Blows = 5
Common Failure Modes: Open, short, excessive leak-
age, mechanical failure
Common Failure Mechanisms: Die and wire bonds,
cracked die, package defects
Military Reference: MIL–STD–750, Method 2015
MOISTURE RESISTANCE
The purpose of this test is to evaluate the moisture resistance
of components under temperature/humidity conditions typical
of tropical environments.
Typical Test Conditions: TA = –10°C to 65°C, rh = 80%
to 98%, t = 24 hours/cycles, cycle = 10
Common Failure Modes: Parametric shifts in leakage
and mechanical failure
Common Failure Mechanisms: Corrosion or contami-
nants on or within the package materials. Poor package
sealing
Military Reference: MIL–STD–750, Method 1021
SOLDERABILITY
The purpose of this test is to measure the ability of the device
leads/terminals to be soldered after an extended period of
storage (shelf life).
Typical Test Conditions: Steam aging = 8 hours, Flux =
R, Solder = Sn60, Sn63
Common Failure Modes: Pin holes, dewetting, nonwet-
ting
Common Failure Mechanisms: Poor plating, contami-
nated leads
Military Reference: MIL–STD–750, Method 2026
SOLDER HEAT
This test is used to measure the ability of a device to withstand
the temperatures as may be seen in wave soldering
operations. Electrical testing is the endpoint critierion for this
stress.
Typical Test Conditions: Solder Temperature = 260
°C, t
= 10 seconds
Common Failure Modes: Parameter shifts, mechanical
failure
Common Failure Mechanisms: Poor package design
Military Reference: MIL–STD–750, Method 2031
STEADY STATE OPERATING LIFE (SSOL)
The purpose of this test is to evaluate the bulk stability of the
die and to generate defects resulting from manufacturing
aberrations
that
are
manifested
as
time
and
stress–dependent failures.
Typical Test Conditions: TA = 25°C, PD = Data Book
maximum rating, t = 16 to 1000 hours
Common Failure Modes: Parametric shifts and cata-
strophic
Common Failure Mechanisms: Foreign material, crack
die, bulk die, metallization, wire and die bond defects
Military Reference: MIL–STD–750, Method 1026
TEMPERATURE CYCLING (AIR TO AIR)
The purpose of this test is to evaluate the ability of the device
to withstand both exposure to extreme temperatures and
transitions between temperature extremes. This testing will
also expose excessive thermal mismatch between materials.
Typical Test Conditions: TA = –65°C to 200°C, cycle =
10 to 4000
Common Failure Modes: Parametric shifts and cata-
strophic
Common Failure Mechanisms: Wire bond, cracked or
lifted die and package failure
Military Reference: MIL–STD–750, Method 1051
THERMAL SHOCK (LIQUID TO LIQUID)
The purpose of this test is to evaluate the ability of the device
to withstand both exposure to extreme temperatures and
sudden transitions between temperature extremes. This
testing will also expose excessive thermal mismatch between
materials.
Typical Test Conditions: TA = 0°C to 100°C, cycle = 20
to 300
Common Failure Modes: Parametric shifts and cata-
strophic
Common Failure Mechanisms: Wire bond, cracked or
lifted die and package failure
Military Reference: MIL–STD–750, Method 1056
VARIABLE FREQUENCY VIBRATION
This test is used to examine the ability of the device to
withstand deterioration due to mechanical resonance.
Typical Test Conditions: Peak acceleration = 20 g’s,
Frequency range = 20 Hz to KHz, t = 48 minutes
Common Failure Modes: Open, short, excessive leak-
age, mechanical failure
Common Failure Mechanisms: Die and wire bonds,
cracked die, package defects
Military Reference: MIL–STD–750, Method 2056
相關(guān)PDF資料
PDF描述
MMBD352WT3 SILICON, UHF BAND, MIXER DIODE
MMBF0201NLT3 300 mA, 20 V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-236AB
MMBF0202PLT3 300 mA, 20 V, P-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-236AB
MMBF170D87Z 500 mA, 60 V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-236AB
MMBF2201NT3 300 mA, 20 V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MMBD301 功能描述:肖特基二極管與整流器 RoHS:否 制造商:Skyworks Solutions, Inc. 產(chǎn)品:Schottky Diodes 峰值反向電壓:2 V 正向連續(xù)電流:50 mA 最大浪涌電流: 配置:Crossover Quad 恢復(fù)時(shí)間: 正向電壓下降:370 mV 最大反向漏泄電流: 最大功率耗散:75 mW 工作溫度范圍:- 65 C to + 150 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:SOT-143 封裝:Reel
MMBD301L 制造商:ONSEMI 制造商全稱:ON Semiconductor 功能描述:SILICON HOT-CARRIER DETECTOR AND SWITCHING DIODES
MMBD301LT1 功能描述:肖特基二極管與整流器 30V 200mW Single RoHS:否 制造商:Skyworks Solutions, Inc. 產(chǎn)品:Schottky Diodes 峰值反向電壓:2 V 正向連續(xù)電流:50 mA 最大浪涌電流: 配置:Crossover Quad 恢復(fù)時(shí)間: 正向電壓下降:370 mV 最大反向漏泄電流: 最大功率耗散:75 mW 工作溫度范圍:- 65 C to + 150 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:SOT-143 封裝:Reel
MMBD301LT1G 功能描述:肖特基二極管與整流器 30V 200mW Single RoHS:否 制造商:Skyworks Solutions, Inc. 產(chǎn)品:Schottky Diodes 峰值反向電壓:2 V 正向連續(xù)電流:50 mA 最大浪涌電流: 配置:Crossover Quad 恢復(fù)時(shí)間: 正向電壓下降:370 mV 最大反向漏泄電流: 最大功率耗散:75 mW 工作溫度范圍:- 65 C to + 150 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:SOT-143 封裝:Reel
MMBD301LT3 功能描述:肖特基二極管與整流器 30V 200mW Single RoHS:否 制造商:Skyworks Solutions, Inc. 產(chǎn)品:Schottky Diodes 峰值反向電壓:2 V 正向連續(xù)電流:50 mA 最大浪涌電流: 配置:Crossover Quad 恢復(fù)時(shí)間: 正向電壓下降:370 mV 最大反向漏泄電流: 最大功率耗散:75 mW 工作溫度范圍:- 65 C to + 150 C 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:SOT-143 封裝:Reel