
Test Configurations
Input Reflected-Ripple Current Test Setup
Input reflected-ripple current is measured with a inductor
Lin (4.7uH) and Cin (220uF, ESR < 1.0[ at 100 KHz) to
simulate source impedance.
Capacitor Cin, offsets possible battery impedance.
Current ripple is measured at the input terminals of the
module, measurement bandwidth is 0-500 KHz.
Peak-to-Peak Output Noise Measurement Test
Use a Cout 1.0uF ceramic capacitor.
Scope measurement should be made by using a BNC
socket, measurement bandwidth is 0-20 MHz. Position the
load between 50 mm and 75 mm from the DC/DC Converter.
Design & Feature Considerations
Remote On/Off
Positive logic remote on/off turns the module on during a
logic high voltage on the remote on/off pin, and off during a
logic low.
To turn the power module on and off, the user must supply
a switch to control the voltage between the on/off terminal and
the -Vin terminal.
The switch can be an open collector or equivalent.
A logic low is -1V to 1.0V.
A logic high is 2.5V to 100V.
The maximum sink current at the on/off terminal (Pin 3)
during a logic low is -100uA.
The maximum allowable leakage current of a switch
connected to the on/off terminal (Pin 3) at logic high (2.5V to
100V) is 5uA.
Output Voltage Trim
Output voltage trim allows the user to increase or decrease
the output voltage set point of a module.
The output voltage can be adjusted by placing an external
resistor (Radj) between the Trim and +Vout or -Vout
terminals. By adjusting Radj, the output voltage can be
change by {10% of the nominal output voltage.
A 10K, 1 or 10 Turn trimpot is usually specified for
continuous trimming. Trim pin may be safely left floating if it is
not used.
Connecting the external resistor (Radj-up) between the
Trim and -Vout pins increases the output voltage to set the
point as defined in the following equation:
Vadj - Vout
(33*Vout)- (30*Vadj)
Radj-up =
Connecting the external resistor (Radj-down) between the
Trim and +Vout pins decreases the output voltage set point as
defined in the following equation:
Vout-Vadj
(36.667*Vadj) - (33*Vout)
Radj-down =
VDC/ K[
:
Units
Adjusted Output Voltage
:
Vadj
Nominal Output Voltage
:
Vout
Overcurrent Protection
To provide protection in a fault (output overload) condition,
the unit is equipped with internal current limiting circuitry and
can endure current limiting for an unlimited duration. At the
point of current-limit inception, the unit shifts from voltage
control to current control. The unit operates normally once the
output current is brought back into its specified range.
Overvoltage Protection
The output overvoltage clamp consists of control circuitry,
which is independent of the primary regulation loop, that
monitors the voltage on the output terminals.
The control loop of the clamp has a higher voltage set
point than the primary loop.
This provides a redundant voltage control that reduces the
risk of output overvoltage.
The OVP level can be found in the output data
.
MKW5000 Series
6
MINMAX
REV:0 2005/04
+Out
-Out
+Vin
-Vin
DC / DC
Converter
Load
Battery
+
Lin
+
Cin
To Oscilloscope
Current
Probe
+Out
-Out
+Vin
-Vin
Single Output
DC / DC
Converter
Resistive
Load
Scope
Copper Strip
Cout
+Out
-Out
+Vin
-Vin
Trim Up
Enable
Trim
Trim Down
10K
Trim
Up/Down