for V
鍙冩暩(sh霉)璩囨枡
鍨嬭櫉(h脿o)锛� MCP4461T-502E/ML
寤犲晢锛� Microchip Technology
鏂囦欢闋�(y猫)鏁�(sh霉)锛� 93/100闋�(y猫)
鏂囦欢澶�?銆�?/td> 0K
鎻忚堪锛� IC DGTL POT 257TAPS 5K 20QFN
妯�(bi膩o)婧�(zh菙n)鍖呰锛� 3,300
鎺ョ墖锛� 257
闆婚樆锛堟瓙濮嗭級锛� 5k
闆昏矾鏁�(sh霉)锛� 4
婧害绯绘暩(sh霉)锛� 妯�(bi膩o)婧�(zh菙n)鍊� 150 ppm/°C
瀛樺劜(ch菙)鍣ㄩ鍨嬶細 闈炴槗澶�
鎺ュ彛锛� I²C锛堣ō(sh猫)鍌欎綅鍧€锛�
闆绘簮闆诲锛� 2.7 V ~ 5.5 V
宸ヤ綔婧害锛� -40°C ~ 125°C
瀹夎椤炲瀷锛� 琛ㄩ潰璨艰
灏佽/澶栨锛� 20-VFQFN 瑁搁湶鐒婄洡
渚涙噳(y墨ng)鍟嗚ō(sh猫)鍌欏皝瑁濓細 20-QFN 瑁搁湶鐒婄洡锛�4x4锛�
鍖呰锛� 甯跺嵎 (TR)
绗�1闋�(y猫)绗�2闋�(y猫)绗�3闋�(y猫)绗�4闋�(y猫)绗�5闋�(y猫)绗�6闋�(y猫)绗�7闋�(y猫)绗�8闋�(y猫)绗�9闋�(y猫)绗�10闋�(y猫)绗�11闋�(y猫)绗�12闋�(y猫)绗�13闋�(y猫)绗�14闋�(y猫)绗�15闋�(y猫)绗�16闋�(y猫)绗�17闋�(y猫)绗�18闋�(y猫)绗�19闋�(y猫)绗�20闋�(y猫)绗�21闋�(y猫)绗�22闋�(y猫)绗�23闋�(y猫)绗�24闋�(y猫)绗�25闋�(y猫)绗�26闋�(y猫)绗�27闋�(y猫)绗�28闋�(y猫)绗�29闋�(y猫)绗�30闋�(y猫)绗�31闋�(y猫)绗�32闋�(y猫)绗�33闋�(y猫)绗�34闋�(y猫)绗�35闋�(y猫)绗�36闋�(y猫)绗�37闋�(y猫)绗�38闋�(y猫)绗�39闋�(y猫)绗�40闋�(y猫)绗�41闋�(y猫)绗�42闋�(y猫)绗�43闋�(y猫)绗�44闋�(y猫)绗�45闋�(y猫)绗�46闋�(y猫)绗�47闋�(y猫)绗�48闋�(y猫)绗�49闋�(y猫)绗�50闋�(y猫)绗�51闋�(y猫)绗�52闋�(y猫)绗�53闋�(y猫)绗�54闋�(y猫)绗�55闋�(y猫)绗�56闋�(y猫)绗�57闋�(y猫)绗�58闋�(y猫)绗�59闋�(y猫)绗�60闋�(y猫)绗�61闋�(y猫)绗�62闋�(y猫)绗�63闋�(y猫)绗�64闋�(y猫)绗�65闋�(y猫)绗�66闋�(y猫)绗�67闋�(y猫)绗�68闋�(y猫)绗�69闋�(y猫)绗�70闋�(y猫)绗�71闋�(y猫)绗�72闋�(y猫)绗�73闋�(y猫)绗�74闋�(y猫)绗�75闋�(y猫)绗�76闋�(y猫)绗�77闋�(y猫)绗�78闋�(y猫)绗�79闋�(y猫)绗�80闋�(y猫)绗�81闋�(y猫)绗�82闋�(y猫)绗�83闋�(y猫)绗�84闋�(y猫)绗�85闋�(y猫)绗�86闋�(y猫)绗�87闋�(y猫)绗�88闋�(y猫)绗�89闋�(y猫)绗�90闋�(y猫)绗�91闋�(y猫)绗�92闋�(y猫)鐣�(d膩ng)鍓嶇93闋�(y猫)绗�94闋�(y猫)绗�95闋�(y猫)绗�96闋�(y猫)绗�97闋�(y猫)绗�98闋�(y猫)绗�99闋�(y猫)绗�100闋�(y猫)
MCP444X/446X
DS22265A-page 92
2010 Microchip Technology Inc.
Figure B-3 and Figure B-4 show the wiper resistance
for VDD voltages of 5.5, 3.0, 1.8 Volts. These graphs
show that as the resistor ladder wiper node voltage
(VWCn) approaches the VDD/2 voltage, the wiper
resistance increases. These graphs also show the
different resistance characteristics of the NMOS and
PMOS transistors that make up the wiper switch. This
is demonstrated by the wiper code resistance curve,
which does not mirror itself around the mid-scale code
(wiper code = 128).
So why are the RW graphs showing the maximum
resistance at about mid-scale (wiper code = 128) and
the RBW graphs showing the issue at code 160?
This requires understanding low-voltage transistor
characteristics as well as how the data was measured.
FIGURE B-3:
Wiper Resistance (RW) vs.
Wiper Code and Temperature
(VDD = 5.5V, IW = 900 A; VDD = 3.0V,
IW = 480 A).
FIGURE B-4:
Wiper Resistance (RW) vs.
Wiper Code and Temperature
(VDD = 1.8V, IW = 260 A).
The method in which the data was collected is
important to understand. Figure B-5 shows the
technique that was used to measure the RBW and RW
resistance. In this technique, Terminal A is floating and
Terminal B is connected to ground. A fixed current is
then forced into the wiper (IW) and the corresponding
wiper voltage (VW) is measured. Forcing a known
current through RBW (IW) and then measuring the
voltage difference between the wiper (VW) and
Terminal A (VA), the wiper resistance (RW) can be
calculated, see Figure B-5. Changes in IW current will
change the wiper voltage (VW). This may affect the
device鈥檚 wiper resistance (RW).
FIGURE B-5:
RBW and RW Measurement.
Figure B-6 shows a block diagram of the resistor
network where the RAB resistor is a series of 256 RS
resistors. These resistors are polysilicon devices. Each
wiper switch is an analog switch made up of an NMOS
and PMOS transistor. A more detailed figure of the
wiper switch is shown in Figure B-7. The wiper
resistance is influenced by the voltage on the wiper
switches nodes (VG, VW and VWCn). Temperature also
influences the characteristics of the wiper switch, see
The NMOS transistor and PMOS transistor have
different characteristics. These characteristics, as well
as the wiper switch node voltages, determine the RW
resistance at each wiper code. The variation of each
wiper switch鈥檚 characteristics in the resistor network is
greater then the variation of the RS resistors.
The voltage on the resistor network node (VWCn) is
dependent upon the wiper code selected and the
voltages applied to VA, VB and VW. The wiper switch VG
voltage to VW or VWCn voltage determines how strongly
the transistor is turned on. When the transistor is
weakly turned on, the wiper resistance RW will be high.
When the transistor is strongly turned on, the wiper
resistance (RW) will be in the typical range.
20
40
60
80
100
120
140
160
180
200
220
0
64
128
192
256
Wiper Code
Resistance
()
-40C @ 3.0V
+25C @ 3.0V
+85C @ 3.0V
+125C @ 3.0V
-40C @5.5V
+25C @ 5.5V
+85C @ 5.5V
+125C @ 5.5V
20
520
1020
1520
2020
0
64
128
192
256
Wiper Code
Resistance
()
-40C @ 1.8V
+25C @ 1.8V
+85C @ 1.8V
+125C @ 1.8V
A
B
W
IW
VW
floating
RBW = VW/IW
VA
VB
RW = (VW-VA)/IW
鐩搁棞(gu膩n)PDF璩囨枡
PDF鎻忚堪
MCP4461T-503E/ML IC DGTL POT 257TAPS 50K 20QFN
VE-B1F-MW-B1 CONVERTER MOD DC/DC 72V 100W
VE-B1B-MV CONVERTER MOD DC/DC 95V 150W
VI-BNV-MY-F1 CONVERTER MOD DC/DC 5.8V 50W
M83723/74R14078 CONN RCPT 7POS JAM NUT W/PINS
鐩搁棞(gu膩n)浠g悊鍟�/鎶€琛�(sh霉)鍙冩暩(sh霉)
鍙冩暩(sh霉)鎻忚堪
MCP4461T-503E/ML 鍔熻兘鎻忚堪:鏁�(sh霉)瀛楅浕浣嶈▓(j矛) IC 50k I2C Qd Ch 8bit Nonvolatile memory RoHS:鍚� 鍒堕€犲晢:Maxim Integrated 闆婚樆:200 Ohms 婧害绯绘暩(sh霉):35 PPM / C 瀹瑰樊:25 % POT 鏁�(sh霉)閲�:Dual 姣� POT 鍒嗘帴闋�:256 寮у埛瀛樺劜(ch菙)鍣�:Volatile 绶╂矕鍒�: 鏁�(sh霉)瀛楁帴鍙�:Serial (3-Wire, SPI) 鎻忚堪/鍔熻兘:Dual Volatile Low Voltage Linear Taper Digital Potentiometer 宸ヤ綔闆绘簮闆诲:1.7 V to 5.5 V 闆绘簮闆绘祦:27 uA 鏈€澶у伐浣滄韩搴�:+ 125 C 瀹夎棰�(f膿ng)鏍�:SMD/SMT 灏佽 / 绠遍珨:TQFN-16 灏佽:Reel
MCP4461T-503E/ST 鍔熻兘鎻忚堪:鏁�(sh霉)瀛楅浕浣嶈▓(j矛) IC 50k I2C Qd Ch 8bit Nonvolatile memory RoHS:鍚� 鍒堕€犲晢:Maxim Integrated 闆婚樆:200 Ohms 婧害绯绘暩(sh霉):35 PPM / C 瀹瑰樊:25 % POT 鏁�(sh霉)閲�:Dual 姣� POT 鍒嗘帴闋�:256 寮у埛瀛樺劜(ch菙)鍣�:Volatile 绶╂矕鍒�: 鏁�(sh霉)瀛楁帴鍙�:Serial (3-Wire, SPI) 鎻忚堪/鍔熻兘:Dual Volatile Low Voltage Linear Taper Digital Potentiometer 宸ヤ綔闆绘簮闆诲:1.7 V to 5.5 V 闆绘簮闆绘祦:27 uA 鏈€澶у伐浣滄韩搴�:+ 125 C 瀹夎棰�(f膿ng)鏍�:SMD/SMT 灏佽 / 绠遍珨:TQFN-16 灏佽:Reel
MCP4462-103E/ST 鍔熻兘鎻忚堪:鏁�(sh霉)瀛楅浕浣嶈▓(j矛) IC 10k I2C Quad Ch 8bit Nonvolatile Memory RoHS:鍚� 鍒堕€犲晢:Maxim Integrated 闆婚樆:200 Ohms 婧害绯绘暩(sh霉):35 PPM / C 瀹瑰樊:25 % POT 鏁�(sh霉)閲�:Dual 姣� POT 鍒嗘帴闋�:256 寮у埛瀛樺劜(ch菙)鍣�:Volatile 绶╂矕鍒�: 鏁�(sh霉)瀛楁帴鍙�:Serial (3-Wire, SPI) 鎻忚堪/鍔熻兘:Dual Volatile Low Voltage Linear Taper Digital Potentiometer 宸ヤ綔闆绘簮闆诲:1.7 V to 5.5 V 闆绘簮闆绘祦:27 uA 鏈€澶у伐浣滄韩搴�:+ 125 C 瀹夎棰�(f膿ng)鏍�:SMD/SMT 灏佽 / 绠遍珨:TQFN-16 灏佽:Reel
MCP4462-103E/ST 鍒堕€犲晢:Microchip Technology Inc 鍔熻兘鎻忚堪:; End To End Resistance:10kohm; Track Ta 鍒堕€犲晢:Microchip Technology Inc 鍔熻兘鎻忚堪:IC, DIG POT, 10kohm, 257STEPS, QUAD, TSSOP-14
MCP4462-104E/ST 鍔熻兘鎻忚堪:鏁�(sh霉)瀛楅浕浣嶈▓(j矛) IC 100k I2C Quad Ch 8bt Nonvolatile Memory RoHS:鍚� 鍒堕€犲晢:Maxim Integrated 闆婚樆:200 Ohms 婧害绯绘暩(sh霉):35 PPM / C 瀹瑰樊:25 % POT 鏁�(sh霉)閲�:Dual 姣� POT 鍒嗘帴闋�:256 寮у埛瀛樺劜(ch菙)鍣�:Volatile 绶╂矕鍒�: 鏁�(sh霉)瀛楁帴鍙�:Serial (3-Wire, SPI) 鎻忚堪/鍔熻兘:Dual Volatile Low Voltage Linear Taper Digital Potentiometer 宸ヤ綔闆绘簮闆诲:1.7 V to 5.5 V 闆绘簮闆绘祦:27 uA 鏈€澶у伐浣滄韩搴�:+ 125 C 瀹夎棰�(f膿ng)鏍�:SMD/SMT 灏佽 / 绠遍珨:TQFN-16 灏佽:Reel