Registers
MC68HC908QC16 MC68HC908QC8 MC68HC908QC4 Data Sheet, Rev. 5
Freescale Semiconductor
57
ADLPC — ADC10 Low-Power Configuration Bit
ADLPC controls the speed and power configuration of the successive approximation converter. This
is used to optimize power consumption when higher sample rates are not required.
1 = Low-power configuration: The power is reduced at the expense of maximum clock speed.
0 = High-speed configuration
ADIV[1:0] — ADC10 Clock Divider Bits
ADIV1 and ADIV0 select the divide ratio used by the ADC10 to generate the internal clock ADCK.
Table 3-3 shows the available clock configurations.
ADICLK — Input Clock Select Bit
If ACLKEN is clear, ADICLK selects either the bus clock or an alternate clock source as the input clock
source to generate the internal clock ADCK. If the alternate clock source is less than the minimum
clock speed, use the internally-generated bus clock as the clock source. As long as the internal clock
ADCK, which is equal to the selected input clock divided by ADIV, is at a frequency (fADCK) between
the minimum and maximum clock speeds (considering ALPC), correct operation can be guaranteed.
1 = The internal bus clock is selected as the input clock source
0 = The alternate clock source is selected
MODE[1:0] — 10- or 8-Bit or Hardware Triggered Mode Selection
These bits select 10- or 8-bit operation. The successive approximation converter generates a result
that is rounded to 8- or 10-bit value based on the mode selection. This rounding process sets the
transfer function to transition at the midpoint between the ideal code voltages, causing a quantization
error of 1/2LSB.
Reset returns 8-bit mode.
00 = 8-bit, right-justified, ADSCR software triggered mode enabled
01 = 10-bit, right-justified, ADSCR software triggered mode enabled
10 = Reserved
11 = 10-bit, right-justified, hardware triggered mode enabled
ADLSMP — Long Sample Time Configuration
This bit configures the sample time of the ADC10 to either 3.5 or 23.5 ADCK clock cycles. This adjusts
the sample period to allow higher impedance inputs to be accurately sampled or to maximize
conversion speed for lower impedance inputs. Longer sample times can also be used to lower overall
power consumption in continuous conversion mode if high conversion rates are not required.
1 = Long sample time (23.5 cycles)
0 = Short sample time (3.5 cycles)
Table 3-3. ADC10 Clock Divide Ratio
ADIV1
ADIV0
Divide Ratio (ADIV)
Clock Rate
0
1
Input clock
÷ 1
0
1
2
Input clock
÷ 2
1
0
4
Input clock
÷ 4
1
8
Input clock
÷ 8