參數(shù)資料
型號(hào): LTC3411IDD
廠商: LINEAR TECHNOLOGY CORP
元件分類: 穩(wěn)壓器
英文描述: 2 A SWITCHING REGULATOR, 4000 kHz SWITCHING FREQ-MAX, PDSO10
封裝: 3 X 3 MM, PLASTIC, DFN-10
文件頁數(shù): 7/24頁
文件大?。?/td> 247K
代理商: LTC3411IDD
LTC3411
15
3411fb
In some applications, a more severe transient can be caused
by switching in loads with large (>1uF) input capacitors.
The discharged input capacitors are effectively put in paral-
lel with COUT, causing a rapid drop in VOUT. No regulator
can deliver enough current to prevent this problem, if the
switch connecting the load has low resistance and is driven
quickly. The solution is to limit the turn-on speed of the load
switch driver. A hot swap controller is designed specically
for this purpose and usually incorporates current limiting,
short-circuit protection, and soft-starting.
Efciency Considerations
The percent efciency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the efciency and which change would
produce the most improvement. Percent efciency can
be expressed as:
%Efciency = 100% – (L1 + L2 + L3 + ...)
where L1, L2, etc. are the individual losses as a percent-
age of input power.
Although all dissipative elements in the circuit produce
losses, four main sources usually account for most of
the losses in LTC3411 circuits: 1) LTC3411 VIN current,
2) switching losses, 3) I2R losses, 4) other losses.
1) The VIN current is the DC supply current given in the
electrical characteristics which excludes MOSFET driver
and control currents. VIN current results in a small (<0.1%)
loss that increases with VIN, even at no load.
2) The switching current is the sum of the MOSFET driver
and control currents. The MOSFET driver current results
from switching the gate capacitance of the power MOSFETs.
Each time a MOSFET gate is switched from low to high
to low again, a packet of charge dQ moves from VIN to
ground. The resulting dQ/dt is a current out of VIN that is
typically much larger than the DC bias current. In continu-
ous mode, IGATECHG = fO(QT + QB), where QT and QB are
APPLICATIONS INFORMATION
the gate charges of the internal top and bottom MOSFET
switches. The gate charge losses are proportional to VIN
and thus their effects will be more pronounced at higher
supply voltages.
3) I2R Losses are calculated from the DC resistances of
the internal switches, RSW, and external inductor, RL. In
continuous mode, the average output current owing
through inductor L is “chopped” between the internal top
and bottom switches. Thus, the series resistance look-
ing into the SW pin is a function of both top and bottom
MOSFET RDS(ON) and the duty cycle (DC) as follows:
RSW = (RDS(ON)TOP)(DC) + (RDS(ON)BOT)(1 – DC)
The RDS(ON) for both the top and bottom MOSFETs can
be obtained from the Typical Performance Characteristics
curves. Thus, to obtain I2R losses:
I2R losses = IOUT2(RSW + RL)
4) Other “hidden” losses such as copper trace and internal
battery resistances can account for additional efciency
degradations in portable systems. It is very important
to include these “system” level losses in the design of a
system. The internal battery and fuse resistance losses
can be minimized by making sure that CIN has adequate
charge storage and very low ESR at the switching frequency.
Other losses including diode conduction losses during
dead-time and inductor core losses generally account for
less than 2% total additional loss.
Thermal Considerations
In a majority of applications, the LTC3411 does not dis-
sipate much heat due to its high efciency. However, in
applications where the LTC3411 is running at high ambient
temperature with low supply voltage and high duty cycles,
such as in dropout, the heat dissipated may exceed the
maximum junction temperature of the part. If the junction
temperature reaches approximately 150°C, both power
switches will be turned off and the SW node will become
high impedance.
相關(guān)PDF資料
PDF描述
LTC3411IMS 2 A SWITCHING REGULATOR, 4000 kHz SWITCHING FREQ-MAX, PDSO10
LTC3411IDD#TR 2 A SWITCHING REGULATOR, 4000 kHz SWITCHING FREQ-MAX, PDSO10
LTC3412AMPFE#TR 6 A SWITCHING REGULATOR, 4000 kHz SWITCHING FREQ-MAX, PDSO16
LTC3412AMPFE 6 A SWITCHING REGULATOR, 4000 kHz SWITCHING FREQ-MAX, PDSO16
LTC3412IFE#TR 6.5 A SWITCHING REGULATOR, 4000 kHz SWITCHING FREQ-MAX, PDSO16
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LTC3411IDD#PBF 功能描述:IC REG BUCK SYNC ADJ 1.25A 10DFN RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 開關(guān)穩(wěn)壓器 系列:- 標(biāo)準(zhǔn)包裝:250 系列:- 類型:降壓(降壓) 輸出類型:固定 輸出數(shù):1 輸出電壓:1.2V 輸入電壓:2.05 V ~ 6 V PWM 型:電壓模式 頻率 - 開關(guān):2MHz 電流 - 輸出:500mA 同步整流器:是 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:6-UFDFN 包裝:帶卷 (TR) 供應(yīng)商設(shè)備封裝:6-SON(1.45x1) 產(chǎn)品目錄頁面:1032 (CN2011-ZH PDF) 其它名稱:296-25628-2
LTC3411IDD#TRPBF 功能描述:IC REG BUCK SYNC ADJ 1.25A 10DFN RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 開關(guān)穩(wěn)壓器 系列:- 設(shè)計(jì)資源:Design Support Tool 標(biāo)準(zhǔn)包裝:1 系列:- 類型:升壓(升壓) 輸出類型:固定 輸出數(shù):1 輸出電壓:3V 輸入電壓:0.75 V ~ 2 V PWM 型:- 頻率 - 開關(guān):- 電流 - 輸出:100mA 同步整流器:是 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:SOT-23-5 細(xì)型,TSOT-23-5 包裝:剪切帶 (CT) 供應(yīng)商設(shè)備封裝:TSOT-23-5 其它名稱:AS1323-BTTT-30CT
LTC3411IMS#PBF 功能描述:IC REG BUCK SYNC ADJ 10MSOP RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 開關(guān)穩(wěn)壓器 系列:- 設(shè)計(jì)資源:Design Support Tool 標(biāo)準(zhǔn)包裝:1 系列:- 類型:升壓(升壓) 輸出類型:固定 輸出數(shù):1 輸出電壓:3V 輸入電壓:0.75 V ~ 2 V PWM 型:- 頻率 - 開關(guān):- 電流 - 輸出:100mA 同步整流器:是 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:SOT-23-5 細(xì)型,TSOT-23-5 包裝:剪切帶 (CT) 供應(yīng)商設(shè)備封裝:TSOT-23-5 其它名稱:AS1323-BTTT-30CT
LTC3411IMS#TRPBF 功能描述:IC REG BUCK SYNC ADJ 10MSOP RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 開關(guān)穩(wěn)壓器 系列:- 設(shè)計(jì)資源:Design Support Tool 標(biāo)準(zhǔn)包裝:1 系列:- 類型:升壓(升壓) 輸出類型:固定 輸出數(shù):1 輸出電壓:3V 輸入電壓:0.75 V ~ 2 V PWM 型:- 頻率 - 開關(guān):- 電流 - 輸出:100mA 同步整流器:是 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:SOT-23-5 細(xì)型,TSOT-23-5 包裝:剪切帶 (CT) 供應(yīng)商設(shè)備封裝:TSOT-23-5 其它名稱:AS1323-BTTT-30CT
LTC3412 制造商:LINER 制造商全稱:Linear Technology 功能描述:8A, 4MHz, Monolithic Synchronous Step-Down Regulator