參數(shù)資料
型號: LTC1871IMS#TRPBF-1
廠商: LINEAR TECHNOLOGY CORP
元件分類: 穩(wěn)壓器
英文描述: SWITCHING CONTROLLER, 1000 kHz SWITCHING FREQ-MAX, PDSO10
封裝: LEAD FREE, PLASTIC, MSOP-10
文件頁數(shù): 20/36頁
文件大?。?/td> 354K
代理商: LTC1871IMS#TRPBF-1
27
LTC1871-1
18711fa
and the diode junction temperature is:
TJ = TA + PD RTH(JA)
The RTH(JA) to be used in this equation normally includes
the RTH(JC) for the device plus the thermal resistance from
the board to the ambient temperature in the enclosure.
SEPIC Converter: Output Capacitor Selection
Because of the improved performance of today’s electro-
lytic, tantalum and ceramic capacitors, engineers need to
consider the contributions of ESR (equivalent series resis-
tance), ESL (equivalent series inductance) and the bulk
capacitance when choosing the correct component for a
given output ripple voltage. The effects of these three
parameters (ESR, ESL, and bulk C) on the output voltage
ripple waveform are illustrated in Figure 17 for a typical
coupled-inductor SEPIC converter.
The choice of component(s) begins with the maximum
acceptable ripple voltage (expressed as a percentage of
the output voltage), and how this ripple should be divided
between the ESR step and the charging/discharging
ΔV.
For the purpose of simplicity we will choose 2% for the
maximum output ripple, to be divided equally between the
ESR step and the charging/discharging
ΔV. This percent-
age ripple will change, depending on the requirements of
the application, and the equations provided below can
easily be modified.
For a 1% contribution to the total ripple voltage, the ESR
of the output capacitor can be determined using the
following equation:
ESR
V
I
COUT
O
D PEAK
001
.
()
where:
II
VV
V
D PEAK
O MAX
OD
IN MIN
()
(
)
()
=+
+
1
2
1
χ
For the bulk C component, which also contributes 1% to
the total ripple:
C
I
Vf
OUT
O MAX
O
()
.
001
For many designs it is possible to choose a single capaci-
tor type that satisfies both the ESR and bulk C require-
ments for the design. In certain demanding applications,
however, the ripple voltage can be improved significantly
by connecting two or more types of capacitors in parallel.
For example, using a low ESR ceramic capacitor can
minimize the ESR step, while an electrolytic or tantalum
capacitor can be used to supply the required bulk C.
Once the output capacitor ESR and bulk capacitance have
been determined, the overall ripple voltage waveform
should be verified on a dedicated PC board (see Board
Layout section for more information on component place-
ment). Lab breadboards generally suffer from excessive
series inductance (due to inter-component wiring), and
these parasitics can make the switching waveforms look
significantly worse than they would be on a properly
designed PC board.
The output capacitor in a SEPIC regulator experiences
high RMS ripple currents, as shown in Figure 17. The RMS
output capacitor ripple current is:
II
V
RMS COUT
O MAX
O
IN MIN
()
(
)
()
=
Note that the ripple current ratings from capacitor manu-
facturers are often based on only 2000 hours of life. This
makes it advisable to further derate the capacitor or to
choose a capacitor rated at a higher temperature than
required. Several capacitors may also be placed in parallel
to meet size or height requirements in the design.
Manufacturers such as Nichicon, United Chemicon and
Sanyo should be considered for high performance through-
hole capacitors. The OS-CON semiconductor dielectric
capacitor available from Sanyo has the lowest product of
ESR and size of any aluminum electrolytic, at a somewhat
higher price.
In surface mount applications, multiple capacitors may
have to be placed in parallel in order to meet the ESR or
RMS current handling requirements of the application.
Aluminum electrolytic and dry tantalum capacitors are
both available in surface mount packages. In the case of
tantalum, it is critical that the capacitors have been surge
tested for use in switching power supplies. An excellent
APPLICATIO S I FOR ATIO
WU
UU
相關(guān)PDF資料
PDF描述
LTC1871HMS#TR 0.05 A SWITCHING CONTROLLER, 1000 kHz SWITCHING FREQ-MAX, PDSO10
LTC1871HMS 0.05 A SWITCHING CONTROLLER, 1000 kHz SWITCHING FREQ-MAX, PDSO10
LTC1877IMS8#TRPBF 1.5 A SWITCHING REGULATOR, 605 kHz SWITCHING FREQ-MAX, PDSO8
LTC1929IG-PG 3 A DUAL SWITCHING CONTROLLER, 310 kHz SWITCHING FREQ-MAX, PDSO28
LTC203MJ/883B QUAD 1-CHANNEL, SGL POLE SGL THROW SWITCH, CDIP16
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LTC1872BES6 制造商:Linear Technology 功能描述:DC DC Cntrlr Single-OUT Step Up 2.5V to 9.8V Input 6-Pin TSOT-23
LTC1872BES6#PBF 制造商:Linear Technology 功能描述:DC-DC CONTROLLER BOOST 550KH 制造商:Linear Technology 功能描述:DC-DC CONTROLLER, BOOST, 550KHZ, SOT-23-6; Primary Input Voltage:9.8V; No. of Outputs:1; No. of Pins:6; Operating Temperature Min:-40C; Operating Temperature Max:85C; Package / Case:6-SOT-23 ;RoHS Compliant: Yes
LTC1872BES6#TR 功能描述:IC REG CTRLR BST PWM CM SOT23-6 RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標準包裝:2,500 系列:- PWM 型:電流模式 輸出數(shù):1 頻率 - 最大:500kHz 占空比:96% 電源電壓:4 V ~ 36 V 降壓:無 升壓:是 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:24-WQFN 裸露焊盤 包裝:帶卷 (TR)
LTC1872BES6#TRM 功能描述:IC REG CTRLR BST PWM CM SOT23-6 RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標準包裝:4,000 系列:- PWM 型:電壓模式 輸出數(shù):1 頻率 - 最大:1.5MHz 占空比:66.7% 電源電壓:4.75 V ~ 5.25 V 降壓:是 升壓:無 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 85°C 封裝/外殼:40-VFQFN 裸露焊盤 包裝:帶卷 (TR)
LTC1872BES6#TRMPBF 功能描述:IC REG CTRLR BST PWM CM SOT23-6 RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 特色產(chǎn)品:LM3753/54 Scalable 2-Phase Synchronous Buck Controllers 標準包裝:1 系列:PowerWise® PWM 型:電壓模式 輸出數(shù):1 頻率 - 最大:1MHz 占空比:81% 電源電壓:4.5 V ~ 18 V 降壓:是 升壓:無 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-5°C ~ 125°C 封裝/外殼:32-WFQFN 裸露焊盤 包裝:Digi-Reel® 產(chǎn)品目錄頁面:1303 (CN2011-ZH PDF) 其它名稱:LM3754SQDKR