參數(shù)資料
型號(hào): LTC1701
廠商: Linear Technology Corporation
元件分類: 通用總線功能
英文描述: Synchronous 8-Bit Up/Down Binary Counters 24-SOIC 0 to 70
中文描述: 1MHz的降壓型DC / DC轉(zhuǎn)換器采用SOT - 23
文件頁數(shù): 6/12頁
文件大?。?/td> 138K
代理商: LTC1701
6
LTC 1701
Most LTC1701 circuits will be well served by either an
MBR0520L or an MBRM120L. An MBR0520L is a good
choice for I
OUT(MAX)
500mA, as long as the output
doesn’t need to sustain a continuous short.
Input Capacitor (C
IN
) Selection
In continuous mode, the input current of the converter is
a square wave with a duty cycle of approximately V
OUT
/
V
IN
. To prevent large voltage transients, a low equivalent
series resistance (ESR) input capacitor sized for the maxi-
mum RMS current must be used. The maximum RMS
capacitor current is given by:
(
I
I
V
V
V
V
RMS
MAX
OUT
IN
OUT
IN
)
where the maximum average output current I
MAX
equals
the peak current (1 Amp) minus half the peak-to-peak
ripple current, I
MAX
= 1 –
I
L
/2.
This formula has a maximum at V
IN
= 2V
OUT
, where I
RMS
= I
OUT
/2. This simple worst-case is commonly used to
design because even significant deviations do not offer
much relief. Note that capacitor manufacturer’s ripple
current ratings are often based on only 2000 hours life-
time. This makes it advisable to further derate the capaci-
tor, or choose a capacitor rated at a higher temperature
than required. Several capacitors may also be paralleled to
meet the size or height requirements of the design. An
additional 0.1
μ
F to 1
μ
F ceramic capacitor is also recom-
mended on V
IN
for high frequency decoupling.
Output Capacitor (C
OUT
) Selection
The selection of C
OUT
is driven by the required ESR.
Typically, once the ESR requirement is satisfied, the
capacitance is adequate for filtering. The output ripple
(
V
OUT
) is determined by:
+
V
I ESR
fC
OUT
OUT
1
8
where f = operating frequency, C
OUT
= output capacitance
and
I
L
= ripple current in the inductor. With
I
L
= 0.4
I
OUT(MAX)
the output ripple will be less than 100mV with:
ESR
COUT
< 100m
Once the ESR requirements for C
OUT
have been met, the
RMS current rating generally far exceeds the I
RIPPLE(P-P)
requirement.
When the capacitance of C
OUT
is made too small, the
output ripple at low frequencies will be large enough to trip
the I
TH
comparator. This causes Burst Mode operation to
be activated when the LTC1701 would normally be in
continuous mode operation. The effect can be improved at
higher frequencies with lower inductor values.
In surface mount applications, multiple capacitors may
have to be paralleled to meet the capacitance, ESR or RMS
current handling requirement of the application. Alumi-
num electrolyte and dry tantulum capacitors are both
available in surface mount configurations. The OS-CON
semiconductor dielectric capacitor available from Sanyo
has the lowest ESR(size) product of any aluminum elec-
trolytic at a somewhat higher price. In the case of tanta-
lum, it is critical that the capacitors are surge tested for use
in switching power supplies. An excellent choice is the
AVX TPS, AVX TPSV and KEMET T510 series of surface
mount tantalums, avalable in case heights ranging from
2mm to 4mm. Other capacitor types include Nichicon PL
series, Sanyo POSCAP and Panasonic SP.
Ceramic Capacitors
Higher value, lower cost ceramic capacitors are now
becoming available in smaller case sizes. These are tempt-
ing for switching regulator use because of their very low
ESR. Unfortunately, the ESR is so low that it can cause
loop stability problems. Solid tantalum capacitor ESR
generates a loop “zero” at 5kHz to 50kHz that is instrumen-
tal in giving acceptable loop phase margin. Ceramic ca-
pacitors remain capacitive to beyond 300kHz and usually
resonate with their ESL before ESR becomes effective.
Also, ceramic caps are prone to temperature effects which
requires the designer to check loop stability over the
operating temperature range.
For these reasons, most of the input and output capaci-
tance should be composed of tantalum capacitors for
stability combined with about 0.1
μ
F to 1
μ
F of ceramic
capacitors for high frequency decoupling.
APPLICATIU
W
U
U
相關(guān)PDF資料
PDF描述
LTC1701ES5 Synchronous 8-Bit Up/Down Binary Counters 24-SOIC 0 to 70
LTC1703 Synchronous 8-Bit Up/Down Binary Counters 24-PDIP 0 to 70
LTC1703CG Synchronous 8-Bit Up/Down Binary Counters 24-PDIP 0 to 70
LTC1704 Synchronous 8-Bit Up/Down Binary Counters 24-SOIC 0 to 70
LTC1704B Synchronous 8-Bit Up/Down Binary Counters 24-SOIC 0 to 70
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LTC1701BES5 制造商:Linear Technology 功能描述:1.1 A SWITCHING REGULATOR, 1000 kHz SWITCHING FREQ-MAX, PDSO5
LTC1701BES5#PBF 制造商:Linear Technology 功能描述:Conv DC-DC Single Step Down 2.5V to 5.5V 5-Pin TSOT-23 制造商:Linear Technology 功能描述:DP-SWREG/Monolithic, CUT TAPE 1MHz Step-dn DC/DC Con in SOT-23
LTC1701BES5#TR 功能描述:IC REG BUCK ADJ 0.5A TSOT23-5 RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 開關(guān)穩(wěn)壓器 系列:- 標(biāo)準(zhǔn)包裝:2,500 系列:- 類型:升壓(升壓) 輸出類型:可調(diào)式 輸出數(shù):1 輸出電壓:1.24 V ~ 30 V 輸入電壓:1.5 V ~ 12 V PWM 型:電流模式,混合 頻率 - 開關(guān):600kHz 電流 - 輸出:500mA 同步整流器:無 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-SOIC(0.154",3.90mm 寬) 包裝:帶卷 (TR) 供應(yīng)商設(shè)備封裝:8-SOIC
LTC1701BES5#TRM 功能描述:IC REG BUCK ADJ 0.5A TSOT23-5 RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 開關(guān)穩(wěn)壓器 系列:- 標(biāo)準(zhǔn)包裝:2,500 系列:- 類型:升壓(升壓) 輸出類型:可調(diào)式 輸出數(shù):1 輸出電壓:1.24 V ~ 30 V 輸入電壓:1.5 V ~ 12 V PWM 型:電流模式,混合 頻率 - 開關(guān):600kHz 電流 - 輸出:500mA 同步整流器:無 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-SOIC(0.154",3.90mm 寬) 包裝:帶卷 (TR) 供應(yīng)商設(shè)備封裝:8-SOIC
LTC1701BES5#TRMPBF 功能描述:IC REG BUCK ADJ 0.5A TSOT23-5 RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 開關(guān)穩(wěn)壓器 系列:- 標(biāo)準(zhǔn)包裝:2,500 系列:- 類型:升壓(升壓) 輸出類型:可調(diào)式 輸出數(shù):1 輸出電壓:1.24 V ~ 30 V 輸入電壓:1.5 V ~ 12 V PWM 型:電流模式,混合 頻率 - 開關(guān):600kHz 電流 - 輸出:500mA 同步整流器:無 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-SOIC(0.154",3.90mm 寬) 包裝:帶卷 (TR) 供應(yīng)商設(shè)備封裝:8-SOIC