參數(shù)資料
型號(hào): LT1776IS8#TR
廠商: LINEAR TECHNOLOGY CORP
元件分類: 穩(wěn)壓器
英文描述: 1 A SWITCHING REGULATOR, 230 kHz SWITCHING FREQ-MAX, PDSO8
封裝: 0.150 INCH, PLASTIC, SO-8
文件頁(yè)數(shù): 19/20頁(yè)
文件大?。?/td> 224K
代理商: LT1776IS8#TR
8
LT1776
OPERATIO
U
The system as previously described handles heavy loads
(continuous mode) at good efficiency, but it is actually
counterproductive for light loads. The method of jam-
ming charge into the PNP bases makes it difficult to turn
them off rapidly and achieve the very short switch ON
times required by light loads in discontinuous mode.
Furthermore, the high leading edge dV/dt rate similarly
adversely affects light load controllability.
The solution is to employ a “boost comparator” whose
inputs are the VC control voltage and a fixed internal
threshold reference, VTH. (Remember that in a current
mode switching topology, the VC voltage determines the
peak switch current.) When the VC signal is above VTH, the
previously described “high dV/dt” action is performed.
When the VC signal is below VTH, the boost pulses are
absent, as can be seen in the Low dV/dt Mode Timing
Diagram. Now the DC current, activated by the SWON
signal alone, drives Q4 and this transistor drives Q1 by
itself. The absence of a boost pulse, plus the lack of a
second NPN driver, result in a much lower slew rate which
aids light load controllability.
A further aid to overall efficiency is provided by the
specialized bias regulator circuit, which has a pair of
inputs, VIN and VCC. The VCC pin is normally connected to
the switching supply output. During start-up conditions,
the LT1776 powers itself directly from VIN. However, after
the switching supply output voltage reaches about 2.9V,
the bias regulator uses this supply as its input. Previous
generation buck controller ICs without this provision
typically required hundreds of milliwatts of quiescent
power when operating at high input voltage. This both
degraded efficiency and limited available output current
due to internal heating.
APPLICATIONS INFORMATION
WU
U
Selecting a Power Inductor
There are several parameters to consider when selecting
a power inductor. These include inductance value, peak
current rating (to avoid core saturation), DC resistance,
construction type, physical size, and of course, cost.
In a typical application, proper inductance value is dictated
by matching the discontinuous/continuous crossover point
with the LT1776 internal low-to-high dV/dt threshold. This
is the best compromise between maintaining control with
light loads while maintaining good efficiency with heavy
loads. The fixed internal dV/dt threshold has a nominal
value of 1.4V, which referred to the VC pin threshold and
control voltage to switch transconductance, corresponds
to a peak current of about 200mA. Standard buck con-
verter theory yields the following expression for induc-
tance at the discontinuous/continuous crossover:
L
V
fI
VV
V
OUT
PK
IN
OUT
IN
=
For example, substituting 40V, 5V, 200mA and 200kHz
respectively for VIN, VOUT, IPK and f yields a value of about
100
H. Note that the left half of this expression is indepen-
dent of input voltage while the right half is only a weak
function of VIN when VIN is much greater than VOUT. This
means that a single inductor value will work well over a
range of “high” input voltage. And although a progres-
sively smaller inductor is suggested as VIN begins to
approach VOUT, note that the much higher ON duty cycles
under these conditions are much more forgiving with
respect to controllability and efficiency issues. Therefore
when a wide input voltage range must be accommodated,
say 10V to 40V for 5VOUT, the user should choose an
inductance value based on the maximum input voltage.
Once the inductance value is decided, inductor peak
current rating and resistance need to be considered. Here,
the inductor peak current rating refers to the onset of
saturation in the core material, although manufacturers
sometimes specify a “peak current rating” which is de-
rived from a worst-case combination of core saturation
and self-heating effects. Inductor winding resistance alone
相關(guān)PDF資料
PDF描述
LT1871IMS-7#PBF SWITCHING CONTROLLER, 1000 kHz SWITCHING FREQ-MAX, PDSO10
LT1871IMS-7 SWITCHING CONTROLLER, 1000 kHz SWITCHING FREQ-MAX, PDSO10
LT1871EMS-7#PBF SWITCHING CONTROLLER, 1000 kHz SWITCHING FREQ-MAX, PDSO10
LT1871EMS-7 SWITCHING CONTROLLER, 1000 kHz SWITCHING FREQ-MAX, PDSO10
LT1871EMS-7#TR SWITCHING CONTROLLER, 1000 kHz SWITCHING FREQ-MAX, PDSO10
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LT1777 制造商:LINER 制造商全稱:Linear Technology 功能描述:Low Noise Step-Down Switching Regulator
LT1777C 制造商:LINER 制造商全稱:Linear Technology 功能描述:Low Noise Step-Down Switching Regulator
LT1777CS 功能描述:IC REG BUCK ADJ 0.7A 16SOIC RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 開關(guān)穩(wěn)壓器 系列:- 標(biāo)準(zhǔn)包裝:2,500 系列:- 類型:升壓(升壓) 輸出類型:可調(diào)式 輸出數(shù):1 輸出電壓:1.24 V ~ 30 V 輸入電壓:1.5 V ~ 12 V PWM 型:電流模式,混合 頻率 - 開關(guān):600kHz 電流 - 輸出:500mA 同步整流器:無 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-SOIC(0.154",3.90mm 寬) 包裝:帶卷 (TR) 供應(yīng)商設(shè)備封裝:8-SOIC
LT1777CS#PBF 功能描述:IC REG BUCK ADJ 0.7A 16SOIC RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 開關(guān)穩(wěn)壓器 系列:- 標(biāo)準(zhǔn)包裝:250 系列:- 類型:降壓(降壓) 輸出類型:固定 輸出數(shù):1 輸出電壓:1.2V 輸入電壓:2.05 V ~ 6 V PWM 型:電壓模式 頻率 - 開關(guān):2MHz 電流 - 輸出:500mA 同步整流器:是 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:6-UFDFN 包裝:帶卷 (TR) 供應(yīng)商設(shè)備封裝:6-SON(1.45x1) 產(chǎn)品目錄頁(yè)面:1032 (CN2011-ZH PDF) 其它名稱:296-25628-2
LT1777CS#TR 功能描述:IC REG BUCK ADJ 0.7A 16SOIC RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 開關(guān)穩(wěn)壓器 系列:- 標(biāo)準(zhǔn)包裝:2,500 系列:- 類型:升壓(升壓) 輸出類型:可調(diào)式 輸出數(shù):1 輸出電壓:1.24 V ~ 30 V 輸入電壓:1.5 V ~ 12 V PWM 型:電流模式,混合 頻率 - 開關(guān):600kHz 電流 - 輸出:500mA 同步整流器:無 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-SOIC(0.154",3.90mm 寬) 包裝:帶卷 (TR) 供應(yīng)商設(shè)備封裝:8-SOIC