參數(shù)資料
型號: LFXP15E-3F256C
廠商: Lattice Semiconductor Corporation
文件頁數(shù): 261/397頁
文件大?。?/td> 0K
描述: IC FPGA 15.4KLUTS 188I/O 256-BGA
標準包裝: 90
系列: XP
邏輯元件/單元數(shù): 15000
RAM 位總計: 331776
輸入/輸出數(shù): 188
電源電壓: 1.14 V ~ 1.26 V
安裝類型: 表面貼裝
工作溫度: 0°C ~ 85°C
封裝/外殼: 256-BGA
供應商設備封裝: 256-FPBGA(17x17)
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁第211頁第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁第220頁第221頁第222頁第223頁第224頁第225頁第226頁第227頁第228頁第229頁第230頁第231頁第232頁第233頁第234頁第235頁第236頁第237頁第238頁第239頁第240頁第241頁第242頁第243頁第244頁第245頁第246頁第247頁第248頁第249頁第250頁第251頁第252頁第253頁第254頁第255頁第256頁第257頁第258頁第259頁第260頁當前第261頁第262頁第263頁第264頁第265頁第266頁第267頁第268頁第269頁第270頁第271頁第272頁第273頁第274頁第275頁第276頁第277頁第278頁第279頁第280頁第281頁第282頁第283頁第284頁第285頁第286頁第287頁第288頁第289頁第290頁第291頁第292頁第293頁第294頁第295頁第296頁第297頁第298頁第299頁第300頁第301頁第302頁第303頁第304頁第305頁第306頁第307頁第308頁第309頁第310頁第311頁第312頁第313頁第314頁第315頁第316頁第317頁第318頁第319頁第320頁第321頁第322頁第323頁第324頁第325頁第326頁第327頁第328頁第329頁第330頁第331頁第332頁第333頁第334頁第335頁第336頁第337頁第338頁第339頁第340頁第341頁第342頁第343頁第344頁第345頁第346頁第347頁第348頁第349頁第350頁第351頁第352頁第353頁第354頁第355頁第356頁第357頁第358頁第359頁第360頁第361頁第362頁第363頁第364頁第365頁第366頁第367頁第368頁第369頁第370頁第371頁第372頁第373頁第374頁第375頁第376頁第377頁第378頁第379頁第380頁第381頁第382頁第383頁第384頁第385頁第386頁第387頁第388頁第389頁第390頁第391頁第392頁第393頁第394頁第395頁第396頁第397頁
HDL Synthesis Coding Guidelines
Lattice Semiconductor
for Lattice Semiconductor FPGAs
15-6
Initialization and Default State
A state machine must be initialized to a valid state after power-up. This can be done at the device level during
power up or by including a reset operation to bring it to a known state. For all Lattice Semiconductor FPGA devices,
the Global Set/Reset (GSR) is pulsed at power-up, regardless of the function defined in the design source code. In
the above example, an asynchronous reset can be used to bring the state machine to a valid initialization state. In
the same manner, a state machine should have a default state to ensure the state machine will not go into an
invalid state if not all the possible combinations are clearly defined in the design source code. VHDL and Verilog
have different syntax for default state declaration. In VHDL, if a CASE statement is used to construct a state
machine, “When Others” should be used as the last statement before the end of the statement, If an IF-THEN-
ELSE statement is used, “Else” should be the last assignment for the state machine. In Verilog, use “default” as the
last assignment for a CASE statement, and use “Else” for the IF-THEN-ELSE statement.
Full Case and Parallel Case Specification in Verilog
Verilog has additional attributes to define the default states without writing it specifically in the code. One can use
“full_case” to achieve the same performance as “default”. The following examples show the equivalent representa-
tions of the same code in Synplify. LeonardoSpectrum allows users to apply Verilog-specific options in the GUI set-
tings.
“Parallel_case” makes sure that all the statements in a case statement are mutually exclusive. It is used to inform
the synthesis tools that only one case can be true at a time. The syntax for this attribute in Synplify is as follows:
// synthesis parallel_case
Using Pipelines in the Designs
Pipelining can improve design performance by restructuring a long data path with several levels of logic and break-
ing it up over multiple clock cycles. This method allows a faster clock cycle by relaxing the clock-to-output and
setup time requirements between the registers. It is usually an advantageous structure for creating faster data
paths in register-rich FPGA devices. Knowledge of each FPGA architecture helps in planning pipelines at the
When Others in VHDL
...
architecture lattice_fpga of FSM1 is
type state_typ is (deflt, idle, read, write);
signal next_state : state_typ;
begin
process(clk, rst)
begin
if (rst='1') then
next_state <= idle; dout <= '0';
elsif (clk'event and clk='1') then
case next_state is
when idle =>
next_state <= read; dout <= din(0);
when read =>
next_state <= write; dout <= din(1);
when write =>
next_state <= idle; dout <= din(2);
when others =>
next_state <= deflt; dout <= '0';
end case;
end if;
end process;
...
Default Clause in Verilog
...
// Define state labels explicitly
parameter deflt=2'bxx;
parameter idle =2'b00;
parameter read =2'b01;
parameter write=2'b10;
reg [1:0] next_state;
reg dout;
always @(posedge clk or posedge rst)
if (rst) begin
next_state <= idle;
dout <= 1'b0;
end
else begin
case(next_state)
idle: begin
dout <= din[0]; next_state <= read;
end
read: begin
dout <= din[1]; next_state <= write;
end
write: begin
dout <= din[2]; next_state <= idle;
end
default:
begin
dout <= 1'b0; next_state <= deflt;
end
case (current_state)
// synthesis full_case
2’b00 : next_state <= 2’b01;
2’b01 : next_state <= 2’b11;
2’b11 : next_state <= 2’b00;
case (current_state)
2’b00 : next_state <= 2’b01;
2’b01 : next_state <= 2’b11;
2’b11 : next_state <= 2’b00;
default : next_state <= 2bx;
相關PDF資料
PDF描述
EMC50DRYN-S13 CONN EDGECARD 100POS .100 EXTEND
EMC50DRYH-S13 CONN EDGECARD 100POS .100 EXTEND
ACC44DRTN-S13 CONN EDGECARD 88POS .100 EXTEND
LFXP15E-3FN256C IC FPGA 15.4KLUTS 256FPBGA
ACC44DRTH-S13 CONN EDGECARD 88POS DIP .100 SLD
相關代理商/技術參數(shù)
參數(shù)描述
LFXP15E-3F256I 功能描述:FPGA - 現(xiàn)場可編程門陣列 15.4K LUTs 188 IO 1. 2V -3 Spd I RoHS:否 制造商:Altera Corporation 系列:Cyclone V E 柵極數(shù)量: 邏輯塊數(shù)量:943 內嵌式塊RAM - EBR:1956 kbit 輸入/輸出端數(shù)量:128 最大工作頻率:800 MHz 工作電源電壓:1.1 V 最大工作溫度:+ 70 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-256
LFXP15E-3F388C 功能描述:FPGA - 現(xiàn)場可編程門陣列 15.4K LUTs 268 IO 1. 2V -3 Spd RoHS:否 制造商:Altera Corporation 系列:Cyclone V E 柵極數(shù)量: 邏輯塊數(shù)量:943 內嵌式塊RAM - EBR:1956 kbit 輸入/輸出端數(shù)量:128 最大工作頻率:800 MHz 工作電源電壓:1.1 V 最大工作溫度:+ 70 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-256
LFXP15E-3F388I 功能描述:FPGA - 現(xiàn)場可編程門陣列 15.4K LUTs 268 IO 1. 2V -3 Spd I RoHS:否 制造商:Altera Corporation 系列:Cyclone V E 柵極數(shù)量: 邏輯塊數(shù)量:943 內嵌式塊RAM - EBR:1956 kbit 輸入/輸出端數(shù)量:128 最大工作頻率:800 MHz 工作電源電壓:1.1 V 最大工作溫度:+ 70 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-256
LFXP15E-3F484C 功能描述:FPGA - 現(xiàn)場可編程門陣列 15.4K LUTs 1.2V -3 S pd RoHS:否 制造商:Altera Corporation 系列:Cyclone V E 柵極數(shù)量: 邏輯塊數(shù)量:943 內嵌式塊RAM - EBR:1956 kbit 輸入/輸出端數(shù)量:128 最大工作頻率:800 MHz 工作電源電壓:1.1 V 最大工作溫度:+ 70 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-256
LFXP15E-3F484I 功能描述:FPGA - 現(xiàn)場可編程門陣列 15.4K LUTs 1.2V -3 S pd I RoHS:否 制造商:Altera Corporation 系列:Cyclone V E 柵極數(shù)量: 邏輯塊數(shù)量:943 內嵌式塊RAM - EBR:1956 kbit 輸入/輸出端數(shù)量:128 最大工作頻率:800 MHz 工作電源電壓:1.1 V 最大工作溫度:+ 70 C 安裝風格:SMD/SMT 封裝 / 箱體:FBGA-256